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Abstract	

Selective	 universities	 are	 often	 accused	 of	 unfair	 admission	 practices	 which	 favour	

applicants	from	specific	socioeconomic	groups.	We	develop	an	empirical	framework	for	

testing	whether	such	admissions	are	academically	fair,	i.e.,	they	admit	students	with	the	

highest	 academic	 potential.	 If	 so,	 then	 the	 expected	 performance	 of	 the	 marginal	

admitted	 candidates	 —	 the	 admission	 threshold	 —	 should	 be	 equalized	 across	

socioeconomic	groups.	We	show	that	such	thresholds	are	nonparametrically	 identified	

from	standard	admissions	data	if	unobserved	officers’	heterogeneity	affecting	admission	

decisions	is	median‐independent	of	applicant	covariates	and	the	density	of	past‐admits’	

conditional	expected	performance	 is	positive	around	the	admission	 threshold	 for	each	

socioeconomic	 group.	 Applying	 these	 methods	 to	 admissions	 data	 for	 a	 large	

undergraduate	 programme	 at	 Oxford	 and	 using	 blindly‐marked,	 first‐year	 exam‐

performance	as	 the	outcome	of	 interest,	we	 find	that	the	admission‐threshold	 is	about	

3.7	 percentage‐points	 0.6	 standard‐deviations 	 higher	 for	 males	 than	 females	 and	

about	 1.7	 percentage‐points	 0.3	 standard‐deviations 	 higher	 for	 private‐school	 than	

state‐school	 applicants.	 In	 contrast,	 average	 admission‐rates	 are	 equal	 across	 gender	

and	 school‐type,	 both	 before	 and	 after	 controlling	 for	 applicants’	 background	

characteristics.		

Keywords:	 University	 admissions,	 academic	 fairness,	 economic	 efficiency,	 marginal	

admit,	conditional	median	restriction,	nonparametric	identification. 



1 Introduction

Background: Selective universities are frequently accused of biased admission practices which

favour applicants from socially advantaged backgrounds and thus contribute to the perpetuation

of socioeconomic inequality. For example, in the UK, a highly publicized 2011 Sutton Trust report

shows that 100 elite (mostly expensive private) schools - just 3% of schools for the relevant age-group

- account for 31.9% of admissions to Oxford and Cambridge.1 Universities usually respond to such

allegations by claiming to practice academically fair admissions, i.e., to admit students with the best

academic potential, irrespective of their socioeconomic status. For example, Oxford claims to be

"...committed to recruiting the academically most able students, regardless of background", while

Cambridge claims that its "aim is to offer admission to students of the greatest intellectual potential,

irrespective of social, racial, religious and financial considerations".2 3 Despite significant media

and political interest in the issue, there does not seem to exist a rigorous empirical methodology

for testing these claims on the basis of applicant-level admission data. Our purpose in this paper is

to construct a formal econometric framework within which the "academic fairness" of admissions

may be defined and empirically tested, based on pre-admission background data for all applicants

and college-performance data for the admitted ones.

The notion of fairness we focus on — in accordance with the universities’ claims — is an outcome-

oriented one, in the tradition of Becker (1957) and closely corresponds to the notion of economic

efficiency. Roughly speaking, it dictates that the marginal admitted individuals in different de-

mographic groups (e.g., male and female) of applicants should have identical expected outcomes,

where the expectations are computed based on characteristics observed by admission-officers at the

application stage. This common value will be referred to as the admission threshold.

In economics, equalized marginal returns is a well-understood generic condition for optimal allo-

cations. In the specific context of treatment assignment, it is equivalent to requiring the treatment-

regime to maximize the expected value of the relevant population outcome subject to budget con-

straints, c.f., Bhattacharya and Dupas (2012). However, empirically detecting who are the relevant

marginal candidates and calculating their expected outcomes are difficult problems in general. The

first challenge is that the definition of "marginal admits" is intertwined with the assignment process

and often depends on variables not observable to an analyst (c.f., Heckman, 1998). Secondly, it

is sometimes difficult to observe the relevant outcomes or calculate their expected values. An ex-

1Source: http://www.suttontrust.com/news/news/four-schools-and-one-college-win-more-places-at-oxbridge
2Source:

A. http://www.ox.ac.uk/about_the_university/facts_and_figures/undergraduate_admissions_statistics/index.html

B. http://www.cam.ac.uk/admissions/undergraduate/apply/
3 In British, European and Asian universities, undergraduate admissions are typically subject-specific and almost

entirely academically focused. Extra-curricular achievements, leadership potential etc. typically play no role in

admissions. The closest US equivalent would be admission to post-graduate academic programs.
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ample is the case of hiring workers, where it is difficult for an analyst to measure an individual

worker’s productivity even after she is hired. Further, counter-factual outcomes such as potential

productivity of rejected applicants are in fact never observed. Third, approval decisions for a large

cohort of applicants, e.g., for university places, are usually made simultaneously by several tutors

who apply at least some personal discretion and/or display heterogeneity in taste or knowledge.

This heterogeneity is likely to introduce idiosyncratic variation in individual decisions around a

baseline university-wide policy and make the approval stochastic, even after conditioning on all the

applicant covariates. Defining and identifying the "overall" marginal candidates in presence of such

unobserved treater-heterogeneity is a nontrivial problem — an issue that seems not to have been

discussed previously in the literature.

In the university-application case, however, the first problem is mitigated to a large extent when

the analyst can access the same application forms and standardized test-scores as those used by the

admission tutors. For example, an economist studying admissions in her own university can easily

access these data, especially if she herself is involved in conducting admissions.4 Furthermore,

in large universities, admission decisions for thousands of applicants are typically made within

a short period of time. Consequently, it is difficult to fine-tune the admission process to judge

each candidate based on a different set of characteristics and this leads to standardized assessment

procedures based on a generic set of background variables.5 Therefore in this case, access to

applicant records largely eliminates the unobserved applicant characteristics issue that plagues

studies of unfair protocols in some other situations, such as medical treatment, where patients

are treated sequentially and individually and different criteria may be used to judge treatment

appropriateness depending on the patient’s age, ethnic and health background or gender. This

reasoning further suggests that our methods can be directly used in treatment situations where

(i) approval criteria are standardized, (ii) relevant characteristics of the applicants are obtained

through application forms and (iii) the forms are accessible to the analyst. Two pertinent examples

are the approval of housing or consumer loans (c.f. Jiang, Nelson and Vytlacil, 2011, discussed

below) and the issuance of insurance coverage.6

A second advantage of the admission case is that one can easily match pre-application records

4For instance, the first and third authors of the present paper have served as admission tutors at Oxford. During

their tenure, they could access the entire admission data for all subjects at the undergraduate level. Such access is

also known to be feasible in other universities, c.f., Arcidiacono et al. (2011), Bertrand, Hanna and Mullainathan

(2010), etc.
5For example, in our empirical application reported below, the regression of getting an admission offer on the set

of commonly observed covariates yields a value of 50% for McFadden’s pseudo-2 for a probit model and an 2 of

45% for a linear probability model. These magnitudes are about ten to hundred times higher than goodness-of-fit

measures typically reported by applied researchers for cross-sectional regressions — either linear or probit/logit.
6One other scenario where the analyst and the decision-makers observe the same set of applicant characteristics

is the experimental set-up in Bertrand and Mullainathan (2004). They, however, focus on a notion of fairness which

is different from our outcome-oriented approach (see the discussion just before Assumption 2).
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with college outcomes of admitted candidates, thereby partially mitigating the unobserved outcome

problem. The mitigation is partial because potential outcomes of rejected applicants will still remain

unobserved. Finally, the difficulty in defining and detecting marginal candidates under unobserved

heterogeneity across admission tutors, still needs to be resolved.

Our contribution: In the present paper, we construct an empirical model of admissions in-

volving (i) observed applicant covariates, (ii) unobserved heterogeneity across admission tutors and

(iii) outcomes of past admitted students. We allow for the fact that not all admission offers trans-

late into enrolment because applicants may accept alternative offers or fail to satisfy conditions

specified in the current offer, such as securing a certain grade in the school-leaving public exam-

ination which is held after the admission process. Our primary contribution in this setting is to

show that under reasonable behavioral assumptions and under "continuous density" type regularity

conditions, the baseline admission threshold faced by applicants from a specific demographic group

can be nonparametrically identified from admission data for current applicants and post-enrolment

performance of past admitted students from that demographic group. It is not necessary to identify

potential college outcomes of rejected candidates. A test of efficiency can then be carried out by

checking equality of the identified thresholds across the groups. Our key behavioral assumptions are

that (a) admission tutors form their subjective expectations on the basis of academic outcomes of

past admits and (b) for each type of applicant, the expectational errors, i.e., the differences between

the tutors’ subjective expectations and the true mathematical expectations, have zero median —

i.e., the errors are equally likely to be positive or negative.7 It is important to note that the latter,

"rational expectations"-type assumption allows the distribution — and in particular the variance —

of such errors to differ by demographic group, which is an important generalization. Indeed, one

would expect that this variance is larger for historically under-represented groups, reflecting larger

magnitudes of error in a tutor’s subjective beliefs regarding those types of individuals with whom

the tutor has had less experience.

As a final step in our analysis, we apply our identification (and corresponding inferential)

methods to analyze admissions data from one large undergraduate programme of study at Oxford

University, focusing on first year academic performance as the outcome of interest. The overall

application success rates are seen to be almost identical across gender and type of school, both

before and after controlling for key covariates. However, upon focusing on the marginal admitted

candidates, we find that expected performance thresholds faced by applicants who are male or from

independent schools exceed those faced by females or state school applicants. The magnitude of

the gender difference is large at about 0.6 standard deviations and that for school-types about 0.3

standard deviations of the outcome. This finding is suggestive of some degree of affirmative action

— either explicit or implicit — within the admission process, which is not apparent from the equal

7 If the expectational errors are systematically higher for one group, we can absorb have that difference into our

definition of admission thresholds. Thus the assumption of a zero value for the median is simply a normalization.
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success rates, thereby illustrating the usefulness of our approach.

Related literature: The present paper is substantively related to three broad research areas

— (i) the econometric literature on treatment effects and treatment assignment, (ii) the evaluation

of university admission procedures in education and educational sociology, especially with regard

to social mobility and (iii) the economic analysis of affirmative-action in university admissions.

In regards to treatment effect analysis, our paper complements a recent literature in economet-

rics — pioneered by Manski (2004) — on the reverse problem of how treatment should be targeted

for future populations, using information from past treatment outcomes.8 Much of this literature

assumes existence of trial data on treatment efficacy, which is difficult to obtain in the admissions

context. But the more important distinction is that here we are trying to evaluate the current

admission practice rather than proposing an "optimal" admission protocol. The latter is the goal

of the treatment assignment literature.

In the education literature, a large number of papers have been written about various aspects

of admission to elite colleges and universities, largely focusing on the United States. For a broad,

historical perspective on selectivity in US college admission, see Hoxby (2009). However, we are not

aware of any previous attempt in the academic literature in education, economics or applied statis-

tics to formally test outcome-based efficiency of such admissions. Some prior studies by educational

sociologists attempt to test fairness by comparing the aggregate or covariate-conditioned fraction of

applicants who were offered admission in each socio-demographic group. See for example Zimdars

(2010) or Zimdars et al. (2009) and the references therein. A key contribution of the present paper

is to shift the focus of analysis to the eventual outcomes of the students and thereby show that

equal success rate in admissions across demographic groups can be consistent with very different

admission standards across these different groups. Indeed, that is precisely what we find in our

empirical application. A further point is that here our analysis focuses on the expected outcome

of the marginal admits in different demographic groups. This is in contrast to many other studies

— both academic and policy-oriented — which compare the average pre-admission test-scores (c.f.,

Kane, 1998) or average post-admission performance of admitted students (c.f., Keith et al., 1985)

among different socioeconomic groups. The need to focus on the "marginal" rather than the av-

erage treatment recipient in a discussion of fair treatment was previously emphasized by Heckman

(1998) and that is the approach we take in the present paper.

Given our focus on the marginal admits, the substantively closest work to ours is Bertrand,

Hanna and Mullainathan (2010), who examine the consequences of affirmative action in admission

to Indian engineering colleges on the marginal graduates’ earnings. In their context, admission is

based on a single exam score and admission thresholds differ by applicants’ social caste. These

thresholds are fixed and publicly known, thereby removing a key empirical challenge — that of

defining and identifying the marginal admits and rejects — arising in general admissions contexts

8Stoye (2010), Hirano and Porter (2009) and Tetenov (2011) have more recently extended this line of research.
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where entrance is based on several background variables and there is heterogeneity across admission

tutors. Our methodology is designed to deal with these more general scenarios.

It may also be noted that our work is complementary to a large volume of research in the

education literature on the usefulness of standardized test scores such as the SAT in the US in

predicting academic success in college and how this predictability varies across race and gender.

See, for instance, staff research papers published online at the Institute of Education in the UK and

the College Board in the USA. Rothstein (2004) provides a critical review of this line of research.

Indeed, the purported aim of this literature is to inform the question of how to select applicants

— i.e., the reverse of the question addressed in the present paper which is related to how students

are, in fact, currently being admitted.

On the economic front, our paper complements an existing literature on analyzing the con-

sequences of affirmative actions in college admissions. Fryer and Loury (2005) provide a critical

review of this theoretical literature and a comprehensive bibliography. A survey of the theoretical

literature on profiling in more general situations is Fang and Moro (2008). On the empirical side,

Arcidiacono (2005) uses a structural model of admissions to simulate the potential, counterfactual

consequences of removing affirmative action in US college admission and financial aid. In a different

project, Arcidiacono, Aucejo, Fang and Spenner (2011) use admissions data from Duke University

to empirically investigate the possibility that intended beneficiaries of affirmative action are on

average hurt by its presence due to quality mismatch. In a related paper, Arcidiacono, Aucejo and

Spenner (2011) investigate the consequence of affirmative action for major choice at Duke. Card

and Krueger (2005) investigate the realized impact of eliminating affirmative action on minority

students’ application behavior. In contrast to these works, the present paper may be viewed as

one that attempts to detect the presence of affirmative action type policies from admissions-related

data. In section 3.2 below, we contrast our identification strategy with those that have been used to

detect unfair treatment in law enforcement and healthcare where, however, the empirical settings

are in fact quite different from the college admissions scenario.

Plan of the paper: The rest of the paper is organized as follows. Section 2 sets up the formal

problem and defines the key parameters of interest. Section 3 discusses identification of admis-

sion thresholds using applicant-level admissions data and contrasts our approach with alternative

identification strategies in the empirical microeconomics literature. Section 4 deals with inference.

Section 5 contains the substantive application of our methods to the case of admission to a large

undergraduate programme at Oxford University. Section 6 concludes. All technical proofs are

collected in the appendix.
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2 Benchmark Model

We start our analysis by laying out a benchmark economic model of admissions to help fix ideas.

Based on this economic model, in the next section we develop a corresponding econometric model

incorporating unobserved heterogeneity, which can be used to analyze admissions data.

Let  denote an applicant’s pre-admission characteristics, observed by the university. We

let  := (), where  denotes one or more discrete components of  capturing the group

identity of the applicant (such as sex, race or type of high school attended) which forms the basis

of commonly alleged mistreatment. The variables in  are the applicant’s other characteristics

observed prior to admission which include one or more continuously distributed components like

standardized test-scores. Also, let  denote the applicant’s future academic performance if admitted

to the university (assumed to take on non-negative values, e.g., GPA), and the binary indicator

 denote whether the applicant received an admission offer and the binary indicator  denote

whether the admission offer was accepted by the applicant.

Let W denote the support of the random vector  ,  (·) denote the marginal cumulative
distribution function (C.D.F.) of  and ∗ () denote a -type student’s expected performance

( ∈ W) if he/she enrols, and let  () denote the probability that a -type student upon being
offered admission eventually enrols.

Let  ∈ (0 1) be a constant denoting the maximum fraction of applicants who can be admitted,

given the number of available spaces.

Admission protocols: We can define an admission protocol as a probability  (·) :W → [0 1]

such that an applicant with characteristics  is offered admission with probability  (). A generic

objective of the university may be described as

sup
(·)∈F

Z
∈W

 () () ()∗ ()  () subject to

Z
∈W

 () ()  () ≤ 

Here, F(= F (W [0 1])) denotes a set of [0 1]-valued functions on W, and  () denotes a non-

negative welfare weight, capturing how much the outcome of a -type applicant is worth to the

university. For affirmative action policies,  (·) will be larger for applicants from disadvantaged

socioeconomic backgrounds or under-represented demographic groups. The overall objective is thus

to maximize mean welfare-weighted outcome among the admitted applicants, subject to a budget

constraint. The solution to the above problem takes the form described below in Proposition 1,

which holds under the following condition:

Condition (C):  ()  0 and  ()  0 for any  ∈W.9 Further, for some   0,Z
∈W

 ()1 {∗ () ≥ 0}  () ≥ + 

9This assumption is innocuous in the sense that those  for which  () is zero will not contribute to either the

objective function or the constraint. We can simply redefine W to be the subset of the support of  with  ()  0.

On the other hand,  () has a "welfare" weight interpretation and is thus positive by construction.
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i.e., admitting everyone with ∗ () ≥ 0 will exceed the budget in expectation.

Proposition 1 Under Condition (C), the solution to the problem:

sup
(·)∈F

Z
∈W

 () () ()∗ ()  ()  subject to

Z
∈W

 () ()  () ≤ 

takes the form:

 () =

⎧⎪⎪⎨⎪⎪⎩
1 if  ()  ;

 if  () = ;

0 if  ()  

(1)

where

 () :=  ()∗ () ;  := inf{ :
Z
∈W

 ()1 { ()  }  () ≤ };

and  ∈ [0 1] satisfiesZ
∈W

 () [1 { ()  }+ 1 { () = }]  () = 

The solution (1) is unique in the  -almost-everywhere sense (i.e., if there is another solution, it

differs from (1) only on sets whose probabilities are zero with respect to  ).

The result basically says that the planner should order individuals by their values of  ( ) and

first admit applicants with those values of for which  ( ) is the largest, then to those for whom

it is the next largest and so on till the budget is exhausted. If the distribution of  ( ) has point

masses, then there could be a tie at the margin, which is then broken by randomization (hence

the probability ). In the absence of any point masses in the distribution of  ( ), the optimal

protocol is of a simple threshold-crossing form  () = 1 { () ≥ }. For the rest of the paper,
we will assume that this is the case.

Academically efficient admissions: We define an academically efficient admission protocol

as one which maximizes expected performance of the incoming cohort subject to the restriction

on the number of vacant places. Such an objective is also "academically fair" in the sense that

the expected performance criterion gives equal weight to the outcomes of all applicants, regardless

of their value of  , i.e.,  () is a constant. In this case, the previous solution takes the form

 () = 1 {∗ () ≥ }, where  solves

 =

Z
∈W

 ()1 {∗ () ≥ }  () 

The key feature of the above rule is that  does not depend on and so the value of an applicant’s

 affects the decision on his/her application only through its effect on ∗ ( ). To get some intuition

on this, consider the case where one of the covariates in is gender and assume that the admission

threshold for women,  , is strictly lower than that for men, . Then the marginal female,
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admitted with  = ( ), contributes  × ( ) to the expected aggregate outcome

and takes up  ( ) places, implying a contribution of  (=  ( )  ( ))

to the objective of average realized outcome. Similarly, the marginal rejected male, if admitted,

would contribute  to the average outcome. Since    we can increase the average outcome

if we replaced the marginal female admit with the marginal male reject. Thus different thresholds

cannot be consistent with the objective of maximizing the mean outcome.

3 Econometric Model

The economic model above takes the entire university as a single decision-making entity whereas

in reality, admission decisions are made by individual officials who apply at least some personal

discretion and/or display heterogeneity in taste or knowledge in making the decision. This hetero-

geneity is likely to introduce idiosyncratic variation in the individual decisions around a baseline

university-wide policy. In view of this, we extend the previous economic model into an econometric

one, which incorporates heterogeneity across admission officers and forms the basis of our empirical

analysis.

To set up the empirical framework, we assume that we (i.e., the analysts) observe  and 

for applicants in the current year, drawn in an independent and identically distributed (I.I.D.)

fashion from a distribution of potential applicants. In addition, we have data on one or more

cohorts of applicants in past years who had enrolled in the university. For each such enrolled

applicant, we observe  and the outcome of interest  (e.g., examination score after the first year

of university). When referring to variables from past years or expectations calculated on the basis

of past variables, we will use the superscript " ". We may or may not observe the outcomes of

current year applicants, depending on the timing of data collection. Our methodology does not

depend on the availability of outcome data for current applicants. Our aim is to evaluate academic

efficiency of current year’s admission, given data on () for all current year applicants and

(     |  = 1) for past years’ (successful) applicants.

Let

 ( ) = 
£
  | =  =  = 1

¤
(2)

denote the conditional expectation of outcome   for a past enrolled applicant given his/her

characteristics (   ) = ( ). We assume that when admission tutors decide on whether to

admit an ( )-type student in the current year, they base it on their subjective assessment of

 ( ) which they surmise from data on ( )-type students who had enrolled in previous years.

Note that  ( ) is in general different from [  | =  = ] which is typically unknown

to admission tutors in universities (or loan tutors in banks in our loan application example above).10

Indeed, a large literature in educational statistics on so-called "validation studies" use predicted

10 If there existed trial data where admissions were randomized, then the latter can be calculated and used instead
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performance of admitted candidates to infer the relative predictive ability of standardized test

scores vis-a-vis high school grades and socioeconomic indicators and prescribe policies based on

this analysis. See for example, Kobrin et al. (2001), Kuncel et al. (2008) and Sawyer (1996, 2010).

Since our analysis evaluates what admission tutors are likely to do — rather than what one could

have done under ideal circumstances like having experimental data — using  ( ) rather than

[  | =  = ] is the correct approach here.

Let X denote the support of  conditional on  =  and  = 1, i.e.,

X :=
©
 : Pr

£
 = 1| =  = 

¤
 0

ª


This is the set of the values of  which occur among the admits of type  in past years and so

one can, in principle, calculate (i.e., estimate) the values of  ( ) when  ∈ X. We assume
that a current year applicant (∈ {1     }) with  =  and  =  ∈ X is offered admission if
and only if ∗ ( ) ≥ , where 

∗
 ( ) denotes the subjective conditional expectation of the

admission-tutor handling applicant ’s file and  denotes the university-wide baseline threshold for

applicants of demographic type .11 We specify that ∗ ( ) =  ( )−  where 
 (· ·)

denotes the true mathematical expectation defined in (2) and  is a "friction" or "slippage" term

capturing, for instance, a deviation of the admission tutor’s subjective expectation from the true

mathematical expectation.

Thus the admission process for an applicant  satisfies:

Assumption 1

 = 1
©
 ( ) ≥ 

+ 
ª
if  ∈ X

 (3)

where 
and X

are defined for each individual , analogously to  and X. For  ∈ X
, the

probability of an offer Pr [ = 1|  = ] is bounded away from 12.12

Academically Efficient Admissions: In this setting, we define an admission practice to

be academically efficient/fair at the university level if and only if  is identical across . The

of  ( ). Alternatively, if   were independent of  , given

  


(the so-called selection-on-observables

case), then the two would be identical but this is somewhat irrelevant to the task at hand since admission officers

typically act on the basis of  ( ), whether or not it equals [  | =  = ].
11We will hereafter write a random variable/vector with a subscript , e.g., , to indicate that it is associated with

an individual applicant , while we often suppress the subscript (as heretofore), e.g., , to denote one for a generic

applicant.
12 It is not necessary for our analysis to specify how -type applicants with values of  outside X are treated in the

current year, since all the information regarding the parameter of interest  will come from those -type applicants

whose predicted probability of getting an offer is one-half. Unless the admission process changes drastically between

the two periods, it is reasonable to expect that characteristics which do not occur at all among past admits will be

admitted in the current year either with very low probability (if they have lower test scores than anyone admitted in

any previous year) or with very high probability (if they have higher test scores than anyone admitted in any previous

year). In either case, the probability will be bounded away from 12.
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underlying intuition is that the only way covariates  should influence the admission process is

through their effect on the expected academic outcome. Having a larger  for, say, females than

males implies that a male applicant with the same expected outcome as a female applicant is more

likely to be admitted. Conversely, under affirmative action type policies,  will be lower for those

s which represent historically disadvantaged groups. Therefore, we are interested in identifying

the value of the threshold  for various values of  and testing if they are identical across . We

will call  the "admission threshold" for group . Further, among  type applicants, those whose

 makes  ( ) =  will be referred to as the marginal  type candidates. It is important to

note that our definition of the marginal does not involve . The justification for this is that no

matter what the university’s baseline policy, it has to allow for slippages arising from individual

tutors guessing the academic potential of an applicant based on subjective beliefs. As long as these

slippages are not systematic — as captured by a zero median restriction (see below) — the university

can be regarded as practising academically efficient admissions when  does not vary by .
13

It is also important to note that here we are not making any assumption about whether or

not  affects the distribution of the outcome, conditional on . In our set-up, a male applicant

with identical  as a female candidate can have a higher probability of being admitted and yet

the admission process may be academically fair if males have a higher expected outcome than

females with identical . This contrasts sharply with the notion of fairness employed, for example,

in Bertrand and Mullainathan (2004, BM) which concluded racial bias if two job-applicants with

identical CVs but of different race had different probabilities of being called for interview. In

order for BM’s finding to imply inefficiency according to our criterion, one needs to assume that,

conditional on the information in CVs, race has no impact on average worker productivity.

A third point is that our requirement of economic efficiency can also be interpreted as a re-

quirement of academic fairness in the following sense. Suppose  denotes socioeconomic status

and  denotes score on the admission test. Then it seems that "fairness" gives more credit to

an applicant from underprivileged backgrounds who studied in schools with lower resources but

has the same score on the entrance test as an applicant who had studied in a fee-paying school

with abundant resources. The underlying assumption, of course, is that the former student is more

"meritorious." Conditioning the expected outcome  on both  and  can reveal whether this

judgement is appropriate precisely by predicting a higher eventual outcome for the first student if

13Our use of the term "marginal" is also different from the notion of marginal individuals in Carneiro, Heckman

and Vytlacil (2009, CHV). Firstly, their paper’s set-up involves an instrumental variable (IV), satisfying an exclusion

restriction and a large support condition, which affects allocation to treatment. No such IV seems to be available in

our context. Without such an IV, the analog of CHV’s "marginal individuals" of type ( ) in our set-up are those

for whom the corresponding admission officer’s unobservable error  satisfies  =  ( ) − . But since we are

primarily interested in identifying the university-wide baseline  from knowledge of  ( ), such individuals are

not of primary interest to us. Instead, the relevant  type marginal individuals for us are those whose  satisfies

 ( ) = .
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the assumption is true and a lower eventual outcome for him/her otherwise. A -blind admission

process where  (and ) is not conditioned on  will not reveal this difference and is therefore

both inefficient and as academically "unfair" in this sense.

Identifying assumptions: For the identification/estimation of , we impose the following

conditions for current year applicants  = 1     .

Assumption 2 (i) {()}=1 is an I.I.D. sequence of random vectors and {}=1 is a sequence
of random variables which is first-order stationary (i.e., the marginal distribution of  is the same as

that of  for any  6= ) and is -mixing (strong mixing) with the mixing coefficients  ≤ − for

some constants   0 and   2.14 (ii) median[| ] = 0 almost surely. (iii) The distribution

of  has a strictly positive density (with respect to the Lebesgue measure) around 0, given ( ),

almost surely.

Discussion: The presence of  in (3) allows admission to be non-deterministic, given  and

. We allow the friction sequence {}=1 to be non-I.I.D. and (weakly) dependent. As discussed
above, we interpret the friction  as the expectational error made by the admission tutor handling

applicant ’s file. If several candidate files are handled by the same tutor, then it is possible that

a tutor-specific effect leads to correlations within some of the s. Our -mixing condition in part

(i), which is one of the weakest conditions for the weak dependence used in the literature, will

capture this sort of situation (the degree of dependence is controlled by the mixing coefficients).

The condition says that  and + are almost independent when  is large enough (asymptotically

independent as  → ∞). In particular, if subjective errors of different tutors are independent
and only a small number of applicants are allotted to each tutor (which means that under the

hypothetical situation when the number of applicants  tends to ∞, the number of tutors also
tends to ∞ with the same order as ), the mixing condition in part (i) of Assumption 2 should be

satisfied.15 16

Part (ii) of Assumption 2 is a now-familiar median restriction assumption, first used in discrete

choice settings by Manski (1975). In the admissions context, it will hold when systematic deter-

minants of admission, such as past test scores, interview grades and demographic characteristics

14The -mixing coefficients are defined as follows (see, e.g., Bradley, 2005):

 := sup1≤≤− sup{|Pr[ ∩]− Pr[] Pr[] | :  ∈ F+  ∈ F1}

for (= 1 2    ), where F(∈ F) denotes the -algebra generated by   +1      (with (ΩFPr) denoting the

probability space where our econometric model is defined).
15We note that our mixing condition still allows for some cases when different tutors have (weakly) correlated

beliefs.
16Note also that by the first-order stationarity condition, together with the I.I.D. condition on covariates

{( )}=1, we have  ( ) = Pr [ = 1 |  =  = ] well-defined as a function independent of , since

{( )}=1 is also first-order stationary. While the I.I.D. condition of {( )}=1 can be easily relaxed to
being first-order stationary and -mixing (as {}=1), we impose it mainly for simplifying our technical proofs.
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are observed by the econometrician but idiosyncratic preferences and/or the deviation of the ad-

mission tutors’ subjective expectation from the true  (· ·) are not. Part (ii) basically says that
the true academic potential of any randomly-picked applicant of a given type (defined by a value

of  = ()) is equally likely to be over or underestimated. This assumption may be thought

of as the median analog of "rational expectations" on the part of admission tutors who might be

assigned to the applicant’s file. The zero-median restriction is natural here since systematic errors

on the part of tutors can be absorbed in  (see Footnote 7).

It is important to note that (i) and (ii) of Assumption 2 are much weaker than requiring  to

be independent of (). One case where full independence will fail is where for some historically

under-represented group , the conditional variance of , i.e., Var[| =  = ] is larger for

every , reflecting larger magnitudes of error in tutors’ subjective beliefs regarding those types of

individuals with whom the tutor has had less experience. The conditional median restriction is

robust to such scale dependence, as is well-known since Manski’s (1975) maximum score analysis,

and turns out to be sufficient here for identifying  for each value of . Notice that the type

of scale dependence mentioned above would be ruled out by the independence of  and ()

as is effectively assumed via an "index restriction" in Chandra and Staiger (2009, page 7), who

analyze fairness of surgical treatment assignment in a healthcare context. Observe also that our

zero-median restriction is weaker than requiring the error distributions to be symmetric about zero

and thus allows for arbitrary amounts of skewness.

A "descriptive" interpretation of the zero conditional median restriction is as follows. First note

that since Pr[  0| = ] =
R
Pr[  0| =  = ]| (), we have that median [|] = 0

almost surely implies that median [|] = 0 almost surely (| () denotes the conditional C.D.F.
of  given  = ). Now, one may view the right-hand side (RHS) component determining the

admission in (3), viz.,  + , as a random admission threshold faced by applicants of type .

The previous argument and (ii) of Assumption 2 then imply that the median of this threshold’s

distribution for -type applicants is . Thus testing the equality of, say,  and  is

equivalent to testing whether the distribution of admission thresholds faced by male applicants has

the same median as the distribution of thresholds faced by female applicants.17

Given the condition (ii) of Assumption 2, it follows that the marginal admits among type 

applicants, i.e., those with values of  satisfying  ( ) = , will also satisfy

Pr[ = 1| =  = ] = Pr [  0| =  = ] = 12

which has an intuitive interpretation as follows. According to our model, those applicants whose

 ( ) is very high relative to  will be admitted with probability close to 1. These are the

17Such an interpretation would naturally carry over to assumptions restricting any other conditional quantile,

besides the median, to be zero. However, such a restriction will not have the "rational expectations" type structural

interpretation possessed by the median and hence we do not consider other quantiles here.
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candidates who would get in with certainty if there were no frictions. Conversely, those whose

 ( ) is very low relative to  will be admitted with probability close to 0. They would not

have been admitted in the absence of any frictions. When we have a candidate whose  ( ) is

exactly at the threshold , then in the absence of any friction, the university would be indifferent

between admitting and not admitting this candidate. In this sense, such candidates are marginal.

The stochastic frictions make them equally likely to get in or not and hence the probability of

exactly one half.

Finally, part (iii) of Assumption 2 is a regularity condition that aids the proof of identification.

It will obviously hold for a wide class of continuously-distributed random variables.

Lastly, we will make a technical assumption which would imply the existence of a common

feasible threshold. Toward that end, let Υ denote the support of the distribution of 
 (),

given  = .

Assumption 3 Υ = Υ for all ; and Υ contains an interval  such that the density of 
 ( )

conditional on  =  (whose existence is supposed) is strictly positive on  and  lies in  for

each .

To interpret this assumption, consider the case where  denotes gender and  contains one or

more continuous variables like pre-admission test scores. Then the assumption says that the (con-

ditional) expected outcome for males and that for females take values in the same set. Therefore,

given any value  ∈ Ω, where Ω denotes the support of the distribution of  given  = ,

there exists an 0 ∈ Ω such that 
 () =  (0 ) (note that this does not

require Ω to be identical across ). Fix an arbitrary  ∈ . Then, under the above assumption,

for each , there exists ∗ () ∈int(Ω) such that  (∗ ()  ) =  for every . So we can define

individuals of type  with  = ∗ () to be the "ideally marginal" admits among type , i.e.,

those (∗ ()  )s who would be marginal in the absence of any , as would occur if the university

conducted admissions as a single entity and had perfect knowledge of  (· ·). If admissions are
academically efficient, then for every ,  (∗ ()  ) = ; if not, and the marginal admits are

denoted by ̃ () for group , then  (̃ ()  ) =  will differ across . If the common support

assumption did not hold, then it would be possible that admission is academically efficient with

a common  which lies within the support of  ( ) conditional on  =  but not of

 ( ) given  = . In that case, for males, we will have equality at the margin but

for females, the marginal admits will have expected outcome exceeding the threshold if  lies in

a "hole" with respect to the support of  ( ) given  = . Figure 1 illustrates the

point. The common support assumption would hold if a situation as in the top panel of Figure 1

holds, where both curves have positive height at the cutoff-point , marked by the vertical line.

We in particular note that this common support assumption has nothing to do with the identifi-

cation of group-specific thresholds, analyzed in the following section. Instead, the purpose of this
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The red solid curve represents a fictitious conditional density of   and the green dashed 

curve the density of  . In the top panel, they have the same support and the 

common treatment threshold gamma is shown by the vertical line. In the bottom panel, the 

common threshold lies in the “hole” of the support of  . So there is no x in the 

support of X for females where   can equal the common threshold. 

Figure 1:
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assumption is that it enables us to interpret the inequality between group-specific thresholds as

being symptomatic of academically inefficient admissions.

4 Identification of 

4.1 Identification method

The basic identification idea is to use for each fixed , the median restriction and the observed

Pr[ = 1| =  = ] to identify the values of  defining the marginal admits, i.e., those 

for which Pr[ = 1| =  = ] = 12 and then average  ( ) — separately identified from

admitted students in previous years — across these marginal admits to yield .

Our identification is facilitated by the following regularity condition:

Assumption 4 For each value  in the support of the distribution of  in the current year, the

distribution of the random variable  () conditional on  =  has a strictly positive density

(with respect to the Lebesgue measure) on an open interval around .

This assumption guarantees that there exists some  ∈ X, such that Pr[ = 1| =  =

] = 12. It will hold when  has at least one continuously distributed component and 
 ( )

varies sufficiently with that component. We emphasize that a "large" support for is not necessary

here, because for generic budget constraints,  should be located in the interior of the support of

 ( ).

We formally provide our identification statement through the following proposition. Its proof

also illustrates the intuition and hence is included in the main text.

Proposition 2 Suppose that Assumptions 1, 2-(ii), 2-(iii) and 4 hold. Then, for each , the

threshold  is point-identified for each , given  (· ·).

Proof. Note that if there exists an  ∈ X such that Pr [ = 1| =  = ] = 12, then we must

have

Pr
£
 ()−  ≥ | =  = 

¤
= 12

implying that

 ( )−  = 0

by (ii) and (iii) of Assumption 2. Therefore, by averaging over all such , one obtains that


£
 ()−  | Pr [ = 1 | ] = 12  = 

¤
= 0 (4)

This implies that  can be identified via the equality:

 = 
£
 () | Pr [ = 1 | ] = 12  = 

¤
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Now, Assumption 4 guarantees that for every fixed , the set Π =
©
 ∈ X :  ( ) = 

ª
—

identical to the observable set of  ∈ X satisfying Pr [ = 1| =  = ] = 12 — is nonempty.

Finally,  ∈ X guarantees that we can compute  ( ) for each  ∈ Π from past cohorts, which

completes the proof of identification.

Thus, operationally, the identification strategy for  is to first detect current year’s applicants

of type ( ) for whom the predicted probability (conditional on  = ) of getting an offer is

exactly one half. These are the marginal candidates of type  whose  takes values in the set

Π. Then, calculate predicted outcome, using data on past years’ admits. Finally, average these

predicted outcomes across current years’ -type admits with values of  in Π. This average yields

.

Graphical Intuition: The above identification argument can be visualized through the graph

depicted in Figure 2 which illustrates the admission process for a scalar  and for a fixed . On

the horizontal axis we plot values  of  and on the vertical axis we measure  ( ) in the top

panel and the corresponding probability of offer  ( ) in the bottom panel. In the top panel of the

graph, we plot  ( ) against  by the dashed line and mark the admission threshold 
¡
= 

¢
by

the horizontal dashed line. In the bottom panel, we plot the corresponding admission probability

( ) against  in the absence of errors (dashed line segments) and in the presence of errors (solid

curve).

In the absence of errors, the admission probability would be zero for those values of  where

 ( )   and equal to one where 
 ( ) ≥ . Now consider what happens when there are

stochastic perception errors. Such errors will make the perceived expectation at any value  of 

have a distribution around the dashed  ( ) curve. This is shown by the density humps in the

graph’s top panel which, given the zero median restriction, are centered at the true  ( ). Now,

it is probabilistically determined whether a particular applicant with a value  of  is admitted,

depending on whether the noisy subjective expectation exceeds . At a point as  on the right,

we have  ( )  . In this case, the probability  ( ) exceeds one half. This probability is

computed as the area under the density curve at  over the region above  in the upper panel,

and it is marked by the vertical height of the solid curve in the lower panel. Similarly, at a point

as  on the left, we have  ( )  12. Only at the point  where  ( ) = , the density

hump at  is centered around , which makes the probability of being admitted exactly one half.

Notice that this argument does not require the density curves to be symmetric or have the same

spread. What is required here is that for each , the area under the density curve over the region

above  ( ) should be equal to that over the region below  ( ), i.e., the perception errors

are equally likely to be positive and negative.

Once we have identified the group-specific thresholds , we can test if admission is outcome-

oriented by testing the equality of  across . This implication is facilitated by our common

support condition in Assumption 3 in the previous section for  (· ·).
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Figure 2:
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Remark 1 It is useful to note that our method remains applicable in situations where universities

get applications from students with different educational backgrounds. For example, among UK

university applicants, quite a few take the International Baccalaureate (IB) instead of the A-level

exams. Since our methodology is based entirely on the predicted outcomes and predicted probability

of offer and not on the background covariates themselves, it is easy to include such students into

the analysis. One can simply use IB scores instead of A-level scores as the corresponding variable

in  for these students, and can compute predicted outcomes and probabilities of an offer (by

corresponding regressions; see Section 5). Thereafter, all applicants are pooled together and the

analysis proceeds exactly as before.

Remark 2 In some real situations, one or more applicant characteristics may be more "qualitative"

such as performance in admission interviews. However, for large applicant pools, such information

is usually given as a numerical score or grade by university officials for easy make comparisons at

the end. This score can be used as a component of  in our proposed methodology.

Remark 3 Our analysis does not require background information for past years’ applicants who

were rejected. Universities typically do not store this information and hence it useful to have a

method which does not require it.

4.2 Comparison with other identification strategies

As outlined in Introduction, we are not aware of any existing empirical test of outcome-based

efficiency or fairness in college admissions.

A previous attempt at identifying treatment thresholds — and consequently the marginal treatment-

recipients — in the healthcare context is Chandra and Staiger (2009, CS). CS attempt to identify

difference in expected outcome thresholds for surgery by assuming an index restriction on the un-

observable’s distribution. This approach fails when the unobservable’s distribution has general

covariate-dependent variance, as is quite likely when decision makers have comparatively less ex-

perience with applicants from specific groups and thus make errors with larger variances for such

groups. In the healthcare context, Bhattacharya (2012) suggests an alternative approach to testing

outcome-oriented treatment assignment via a partial identification analysis using a combination

of observational data and prior experimental findings from randomized controlled trials. Such

experimental results are typically difficult to come by in the college admission context.

In the context of law enforcement and medical treatment, some alternative approaches have been

proposed for testing whether disparities in observed treatment rates across demographic groups can

be justified as the consequence of treaters maximizing a specific "legitimate" objective, based on

applicant characteristics which they observe (c.f., Persico, 2009, for a review). The usual approach

in this literature is not to detect the marginals directly, as in the present paper, but to utilize some
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specific institutional feature of the empirical context under study, which would equate the outcome

of the marginal with that of the average in a known subset of the population and thereby elim-

inate the so-called "infra-marginality" problem. However, none of these existing, context-specific

approaches is applicable in our setting. For instance, in the context of policing, Knowles, Persico

and Todd (2005)18 use the assumption that criminals rationally alter their potential outcomes in

response to the crackdown regime, e.g., by altering the amount of contraband they carry. Such

immediate responses are not feasible in the admissions context where applicants’ academic out-

comes depend on long-term human capital accumulation. In the medical setting, Anwar and Fang

(2011) assume that physicians optimally choose a continuous variable related to diagnostic tests

before discharging patients. A test of fair discharge is then based on comparing the average re-

admission rates of discharged patients of different race who had undergone the diagnostic test at the

physician-optimized level of intensity. In the admission set-up, there is usually no such continuous

choice variable available to admission tutors.

In an ongoing project on a methodologically related theme, Jiang, Nelson and Vytlacil (2011,

JNV) analyze the identification of a deterministic model of loan approval using information on

approved loans alone. Their setting and their goal are different from those of the present paper.

In particular, JNV wish to identify an analog of the  (·) function in the deterministic model
 = 1

©
 ( )  0

ª
but when they only observe the distribution of  | = 1. In contrast, we

observe for all applicants, the relevant  function is identified directly from past outcome data,

the determination of  involves additional heterogeneity and the goal is to identify the threshold

’s which potentially varies by  . Like us, JNV also assume, realistically, that all characteristics

of loan-applicants that the banks observe and systematically use are available to the analyst via

the application forms but, unlike us, they cannot allow for any unobserved heterogeneity in the

approval equation, given their data limitations.

5 Estimation and Inference

We now consider the calculation of  from admissions data collected for several cohorts of appli-

cants. We may view the current cohort as a random sample from a model describing the superpopu-

lation of all potential applicants. Therefore, the values of  calculated based on the present cohort

will suffer from sampling uncertainty and a test of equality of ’s across  requires distribution

theory, which we derive in this section.

Motivated by the restriction of (4), we first present an estimator of . Observe that our

identification strategy is fully nonparametric and does not require any functional-form assumption.

With a sample size large enough, one can consider fully nonparametric estimation of  ( ),

18Related recent papers include Anwar and Fang (2006), Grogger and Ridgeway (2006), Antonovic and Knight

(2009) and Brock et al. (2011) among others.
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 ( ) and, eventually, . But for our sample size, this is difficult to implement due to curse of

dimensionality. We therefore resort to estimating  ( ) and  ( ) via parametric models here.

For estimating  we consider both parametric as well as non-parametric kernel based approaches;

in our empirical application, we report the results from both approaches. In the Appendix we

state and prove formal theorems describing the distribution theory for this semiparametric case,

c.f., Theorem 1 in Subsection A.2. For the sake of pedagogical completeness, in the last part of the

Appendix we state and prove the asymptotic distribution of ̂ resulting from fully nonparametric

estimation of  ( ) and  ( ), c.f., Theorem 2 in Subsection A.3.

In the semiparametric approach, we estimate  (· ·) and  (· ·) parametrically in the first step
using past and current cohort data, {(

  

 


 

  

 )}=1 and {( )}=1, respectively,

where  is the sample size of past cohorts and  is that of the current cohort.19 Then, in the

second step, we use the current cohort data {( )}=1 to estimate  by a weighted average of
̂ ( ), where the weights are based on a decreasing function of the distance between ̂ ( )

and 12,

̂ =

X

=1
 (̂ ( )− 12) ̂ ( )1 { = }X

=1
 (̂ ( )− 12)1 { = }

 (5)

Here  () :=  () ;  (·) is a kernel function (R → [0∞));  is a smoothing parameter
(bandwidth); ̂ ( ) and ̂ ( ) are first-step estimators of  ( ) and  ( ), respectively.

This ̂ is a weighted average of predicted outcomes of ( )-types whose predicted probability of

getting an offer, ̂ ( ), is close to a half, where closeness is determined by the kernel  and the

bandwidth .

We may contrast this with a benchmark, fully parametric approach, which is easier to imple-

ment and does not require a bandwidth choice. In this case, we estimate ̂ ( ) and ̂ ( )

parametrically in the first step and then in the second step, project the estimated ̂ ( ) on the

estimated ̂ ( ), using linear regression with the current cohort data. Then  is estimated as

the predicted value of the final regression, evaluated at ̂ ( ) = 12.

We will let the sample size of past cohorts and that of the present cohort to be of the equal

order of magnitude. For notational simplicity in deriving our asymptotic theory, we assume that

 =  (while this assumption can be easily generalized, say,  =  ()).

For the fully parametric case, due to the smoothness of the estimator of  in the regression

parameters, the estimator possess the
√
-consistency and asymptotic-normality properties, which

allows us to use a bootstrap method to obtain standard errors. The semiparametric case is some-

what different from standard two-step estimators where the first step is parametric and the second

step involves some form of averaging of the first step estimation errors, leading eventually to
√
-

consistent estimates. Here, due to kernel smoothing at the second step, even if the first step is

19Given 
 = 1, we can observe the outcome  

 , and if 

 = 0, we say that the zero outcome is observed.

Therefore, we may regard


  


 


 

  




is observed for every .
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parametric, one cannot estimate  at the parametric rate. Moreover, because both the condition-

ing variable  ( ) and the dependent variable 
 ( ) are estimated here, it is not trivial to

derive the distribution theory, which is more complicated than standard nonparametric regression

analysis. We now outline this distribution theory.

Remark 4 It is important to note that in the numerator of (5) we have to use ̂ ( ) rather

than current year outcomes  even if the latter are available at the time of analysis. The reason

is that the admission processes and acceptance patterns in the current year might differ from those

in the past years so that the distribution of  | = 1 in the current year could be different

from that of   |     = 1. It is the latter distribution and not the former which is available

to admission tutors at the time of making the admission decision. Therefore, testing efficiency or

fairness of admissions in the current year requires the use of ̂ ( ) which is based on the latter

distribution.

Distribution of the semiparametric estimator: For the first stage, one may use any

parametric model satisfying some mild conditions (c.f., Assumptions 8 and 9, below) e.g., a probit

or logit model for  ( ); and a linear (regression) model for  ( ). Define ̃ as the infeasible

estimator that would result if the true values  ( ) and  ( ) were used instead of their

estimates:

̃ =

X

=1
 ( ( )− 12) ( )1 { = }X

=1
 ( ( )− 12)1 { = }

 (6)

for each . We show in the Appendix (see Theorem 1) that our semiparametric estimator ̂ () has

the same asymptotic distribution as ̃ (under the assumption that parametric forms of estimators

of  ( ) and  ( ) are correctly specified). Since ̃ is a nonparametric regression estimator

of the dependent variable  ( ) evaluated at  () = 12, we can derive the following

asymptotic result under several standard conditions:

√

£
̃ −  − 2B ()

¤ →  (0V ()) 

where B () and V () denote bias and variance components, respectively. Under appropriate un-

dersmoothing — leading to the asymptotic disappearance of the bias — one can construct confidence

intervals for . The forms of the bias and variance together with sufficient technical conditions

are formally stated as Lemma 1 in the Appendix (see also a remark on Assumption 7).

Remark 5 Note that the convergence rate of ̂ does not depend on the dimension of  (or

( )) since the asymptotic distribution of ̂ and the infeasible ̃ are identical (shown in The-

orem 1 in the Appendix). As seen in (6), our estimation problem is essentially of one dimension,

i.e.,  ( )   ( ) ∈ R1. It is worth noting that the distribution theory derived here differs
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from standard kernel regression theory since both the outcome  ( ) and the conditioning vari-

able  ( ) are unobservable. However, the
√
 rate of ̂ is generic, in that it is obtained even

when even when  ( ) and  ( ) are nonparametrically estimated in the first step, as shown in

Theorem 2 in the Appendix A.3. This occurs because first-step (nonparametric) estimation errors

average out at a fast enough rate to zero in the second step. However, a technical complication

arises here due to the estimator’s form in which the generated regressor ̂ ( ) is inside of the

kernel function, as we can see in (5). In particular, showing that  ( ()− 12) is well-
approximated by  (̂ ( )− 12) requires careful arguments and particular bandwidth choices,
since the convergence of  (̂ ( )− 12) to  ( ( )− 12) only occurs more slowly than
that of ̂( ) to  ( ).

Remark 6 One can find several two-step nonparametric estimators in the literature, for example,

Mammen, Rothe and Schienle (2011), Rilstone (1996) and Sperlich (2009). However, these authors

analyze the setting where only regressors are generated, while in our setting both dependent and

regressor variables are (nonparametrically) generated. The latter case seems not to have been well-

investigated in previous studies. The aforementioned papers’ results imply that final estimators

are unaffected by the first step estimation errors (even though the convergence rate in the first

step is slower than that in the second step) under suitable bandwidth choices. We show that this

conclusion continues to hold when both the dependent and regressor variables are generated, which

seems to be a new result. Additionally, as in Assumption 2, we allow for statistical dependence

among observations. This sort of non-I.I.D. setting seems not to have been considered in previous

studies on two-step nonparametric estimators.

Choosing bandwidths: Note that our parameter of interest,  is exactly the conditional

mean [ ( ) | () = 12 = ]. Therefore, we recommend a standard method based

on the cross-validation (CV), which uses a global goodness-of-fit criterion for the conditional mean

[ ( ) | ( ) = 12  = ]. In the present context, the CV is achieved by minimizing

the leave-one-out criterion

 () =
X

=1
1 { = } × £̂ (  )−− (̂ (  )  ;)

¤2


where

− ( ;) =

X
1≤≤; 6=  (̂ ( )− ) ̂ ()1 { = }X

1≤≤;  6=  (̂ ( )− )1 { = }

is an estimator of 
£
 ( ) |  ( ) =  = 

¤
, calculated using the bandwidth . The

minimizer ̂ of the CV criterion is optimal in that it converges to the minimizer of the true mean-

squared error of the estimator. However, if we let  = ̂ , then we incur the asymptotic bias,

since the order of ̂ is 
−15. To remove the bias, we use  = ̂  (log) in our implementation.
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This undersmoothing, as is well-known, serves to reduce the asymptotic bias and makes it possible

to construct confidence intervals for  without explicitly estimating the bias component.
20

6 Application to Oxford admissions

Background: Our application is based on admissions data for two recent cohorts of applicants to

an undergraduate degree programme in a highly popular subject at Oxford University. Like in many

other European and Asian countries, students enter British universities to study a specific subject

from the start, rather than the US model of following a broad general curriculum in the beginning,

followed by specialization in later years. Consequently, admissions are conducted primarily by

faculty members (i.e., admission tutors) in the specific discipline to which the candidate has applied.

An applicant competes with all other applicants to this specific discipline and no switches are

permitted across disciplines in later years. The admission process is in general — and at Oxford

in particular — strictly academic where extra-curricular achievements, such as leadership qualities,

suitability as team-members, engagement with the community etc., are given no weight. In that

sense, undergraduate admissions at Oxford are more comparable with Ph.D. admissions in US

universities. Furthermore, almost all UK applicants sit two common school-leaving examinations,

viz., the GCSE and the A-levels before entering university. Each of these examinations requires the

student to take written tests in specific subjects — e.g., math, history, English etc. — rather than

an overall SAT-type aptitude test. The examinations are centrally conducted and hence scores of

individual students on these examinations are directly comparable, unlike high-school GPA in the

US where candidates undergo school-specific assessments which may not be directly comparable

across schools. Consequently, much less weight is placed in the admission process on school-reference

letters which tend to be somewhat generic and within-school ranks which are typically unavailable

to admission tutors.

Choice of Sample: For our empirical analysis, we focus on UK-based applicants who have

(i) written a substantive essay (a requirement for entry), (ii) had taken a standardized aptitude

test (comparable to the SAT for US colleges), (iii) had taken the standardized school-leaving ex-

amination in the UK, viz., the GCSE, and (iv) have either taken or will take the advanced school

qualifications — A-levels — before college begins. Almost all UK-based applicants would normally

satisfy these four criteria.

The application process consists of an initial stage whereby a standardized "UCAS" form is

filled by the applicant and submitted to the university. This form contains the applicant’s unique

20Note that the need for the undersmoothing is not a problem unique to our estimator, but is shared by any kernel-

based estimators (see, e.g., pp. 41-43 in Pagan and Ullah, 1999). Alternatively, we might be able to estimate the

bias component. However, it is not easy since B () involves derivatives of relevant functions, whose nonparametric

estimation requires some other bandwidth choice.

24



identifier number, gender, school type, prior academic performance record, personal statement and

a letter of reference from the school. The aptitude-test and essay-assessment scores are separately

recorded. All of this information is then entered into a spread-sheet held at a central database

which all admission tutors can access.

About one-third of all applicants are selected for interview on the basis of UCAS information,

aptitude test and essay, and the rest rejected. Selected candidates are then assessed via a face-

to-face interview and the interview scores are recorded in the central database. This sub-group

of applicants who have been called to interview will constitute our sample of interest. Therefore,

we are in effect testing the academic efficiency of the second round of the selection process, taking

the first round as given. Accordingly, from now on, we will refer to those summoned for interview

as the applicants. The final admission decision is made by considering all the above information

from among the candidates called for interviews. Whenever a student has not yet taken the A-

level exams, the schools’ prediction of their A-level performance is taken into account. In such

cases, admission offers are made conditional on the applicant securing the predicted grades. For

our application, we use anonymized data for three cohorts of applicants from their records held

at the central admissions database at Oxford. For the admitted students, we merged these with

their performance in the first year examinations, in which students take three papers. The scores

across the three papers are averaged to calculate the overall performance, which we take to be the

outcome of interest.

In Table 0, we provide explanation of the labels used in the subsequent tables.

Choice of covariates: We chose a preliminary set of potential covariates, based mainly on

intuition, our personal experience as admission tutors and anecdotal experiences of colleagues. To

confirm our choice, we conducted an anonymized online survey of the subject-tutors in Oxford,

who participate in the admission process. The survey asked the tutors to state how much weight

they attach during admissions to each of these potential covariates with "1" representing no weight

and "5" denoting maximum weight. The results, based on 52 responses, are summarized in Figure

3. One may count the fraction of "important (score = 4)" and "very important (score = 5)" for

each category (equivalently the sum of heights of the bottom two sections of the bars in Figure

3) to gauge its perceived importance in the admissions process. The A-level score appears to be

the most important criterion, followed by the aptitude test and interview scores and then GCSE

performance. The choice of subjects at A-level (two specific subjects, referred to as subjects 1 and

2, are recommended by Oxford for this particular programme of study) are given medium weights

and the personal statement and school reference are given fairly low weights. We therefore settle on

using scores from the GCSE, A-levels, aptitude test scores (including the essay) and the interview

score for our analysis. We also use dummies for whether the applicant studied two specific subjects,

at A-level, which are recommended by Oxford. A more detailed description of these covariates is

provided in Table 0, below.
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Group identities : We consider academic efficiency of admissions with regards to two differ-

ent group identities, viz., gender and type of school attended by the applicant. Oxford University is

frequently criticized for the relatively high proportion of privately-educated students admitted over-

all (c.f., Footnote 1 above). The implication is that applicants from independent (private) schools,

where spending per student is very much higher than in state schools (Graddy and Stevens, 2005),

have an unfair advantage in the admission process. As regards gender, in the UK, as in most OECD

countries, the higher education participation rate is higher for women, having overtaken the partic-

ipation rate for men in 1993. However, Oxford University appears to have lagged behind the trend:

in 2010-11, 55% of undergraduates in UK universities were female, but 56% of students admitted

to Oxford were male.21 Typically, gender imbalances are more pronounced in certain programmes

and includes the one we study, where male enrolment is nearly twice the female enrolment.

Given our focus on these group-identities, we separately asked tutors in our survey whether

they took into account gender and school-type of the applicants in making their decision. This

question is more politically sensitive than the previous ones and an affirmative answer is likely

more trustable than a negative one. The responses are plotted in Figure 4 where we see that tutors

claim to use both characteristics in making their decision and school-type is paid more attention

in general than applicant gender. Given these findings, we include school-type as an explanatory

variable when calculating thresholds by gender and vice versa.

Outcome: After entering university, the candidates take examinations at the end of their first

21Source: Guardian newspaper report at:

http://www.guardian.co.uk/education/2009/aug/19/oxford-university-men-places-women
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year. There are three papers, and each script is marked blindly, i.e., the marking tutors do not

know anything about the candidate’s background. We use the average score over the three papers

as our outcome — labelled prelim_tot — which can range from 0 to 100. Obviously, this variable is

available for admitted candidates only. The key advantage of using the preliminary year score as the

relevant outcome measure is that every admit sits the same preliminary exam in any given year; so

there is no confounding from the difference in score distributions across different optional subjects,

as often happens in the final examinations at the end of the 3-year course. In fact, Arcidiacono,

Aucejo and Spenner (2011) have documented, for Duke University data, large differences in patterns

of major choice between candidates who are the likely beneficiaries of affirmative action policies

during admissions compared to the major choice patterns of other enrolled students.

Summary statistics and success rates: We provide summary statistics for the entire data

in Tables 1A and 1B. We first focus on differences in admission patterns by gender. Table 1A shows

that male applicants have better aptitude test scores and interview averages and male admits score

an average of about 1 percentage point (20% of the overall standard deviation) higher in the first

year exams. They perform worse on average in their GCSE and A-levels. These differences are

statistically significant at the 5% level. Note that there is no significant difference in offer rates

between male and female candidates.

In Table 2 we report the results of (i) a probit regression of receiving an offer as a function of

various characteristics among all applicants and (ii) a linear regression of first year average outcome

among the admitted candidates, as a function of the same characteristics. Table 2A strengthens

the findings from Tables 1A and 1B by showing that even after controlling for covariates, gender

and school-type do not affect the average success rate among applicants. The value of McFadden’s

pseudo-2 for the probit model corresponding to Table 2A is about 50% and the corresponding
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2 for a linear probability model (not reported here) is about 45% — which are about 10 times

higher than the goodness-of-fit measures typically reported by applied researchers working with

cross-sectional data. This suggests that the commonly observed covariates explain a very large

fraction of admission outcomes. On a more minor note, Tables 2A and 2B further show that

the aptitude test and interview scores have the largest impact upon receiving an offer for the

applicant population and a relatively smaller impact on first year performance among the admitted

candidates. But since the underlying samples used in Tables 2A and 2B are different, these two

effects are not directly comparable. It is conceivable that among the sample selected to receive an

admission offer, those with lower aptitude-test score are better along other dimensions than those

with low aptitude test-scores among the general applicant pool. This would serve to mitigate the

effect of the aptitude test scores on first year performance among the admitted students (reported

in Table 2B) relative to their impact on the potential outcomes of all applicants.

Threshold results: We now turn to the key results from applying the ideas of the present

paper — viz., a test of whether the marginal admitted male and the marginal admitted female

student have identical expected first year scores. To do this test, for each gender, we compute

the expected score as a linear function of age, GCSE score, A-level scores, dummies for whether

the candidate took the recommended subjects at A-level, aptitude-test scores, the interview score

and whether the applicant came from an independent school. Using the zero conditional median

restriction on errors, we use (5) to calculate the threshold faced by each gender as the average of

expected first year scores for admitted applicants whose probability of being admitted is predicted

(through a probit) to be close to 12. To choose the bandwidth for defining "closeness", we use

the leave-one-out cross-validation. The CV criterion is plotted in Figure 5 for the four cases of

(clockwise from top left) male, female, state-school and independent-school. The horizontal axis,

marked "bw" represents the scale multiplying −15 × , where  is the relevant sample size and

 is the estimated standard deviation of the estimated regressor (the ̂ (· ·)). The scale  was

varied to ensure that the resulting bandwidths (̂ = × −15 ×  (log)) lie between 0.01 and

0.99.

The numerical minimizer ∗ of this criterion over  is used to compute the optimal bandwidth

̂∗ = ∗ × −15 ×  log () in each case.

In Table 3A, we show the difference in estimated admission thresholds for a range of bandwidths

(which define "closeness to 12") and the Epanechnikov kernel () = (34)
¡
1− 2

¢×1 {|| ≤ 1}.
The middle bandwidth (shaded row) is the optimal one (̂∗), described above. The other rows

correspond to bandwidths that are 0.5 times the optimal one and 2 times the optimal one, respec-

tively. The last row corresponds to a fully parametric analysis where the parametrically estimated

̂ ( ) is regressed on the parametrically estimated ̂ ( ) and its square and the predicted

value at ̂ ( ) = 12 is taken to be the estimate of ̂. The second row in Table 3A, for instance,

may be read as follows. The entry in the first column specifies the scale by which the optimal
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bandwidth is multiplied (in this case 1), and the second column reports the male threshold com-

puted by the corresponding scaled bandwidth. We see that the marginal male admits are expected

to score 59.36 percent in their first year examination. The third column shows that the marginal

female admits can be expected to score 55.67 percent, implying a difference of 3.7 percent (re-

ported in the fourth column). This difference has a 1-sided p-value of 0.004 under the null of equal

thresholds, reported in the fifth column. The 3.7 percentage point difference amounts to about

100 × 376 = 61% of one standard deviation of the overall first-year score distribution and thus

represents a relatively large magnitude difference.

It is interesting to contrast this finding with Table 1A where we found that application success

rates were almost identical across gender and Table 2A where we found that gender was not

a significant predictor of the average application success, conditional on other covariates. This

highlights the usefulness of our approach which, by focusing on the marginal admits, reveals a stark

difference between the treatments of male and female candidates not apparent from the conditional

or the unconditional (on covariates) average success rates by gender. It is also interesting to note
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that the gender-difference in expected outcomes for the average admit is about 0.92 percentage

points which is much smaller than the 3.7 points difference among the marginal candidates.

Outcome variants: In Table 4A, we consider slightly different forms of the outcome, viz.,

(i) the chances of scoring at least 60 and (ii) securing at least 55. These correspond roughly to

the 50th and 20th percentiles of the overall score distribution, respectively. In particular, the 55+

criterion corresponds to an admission process designed to maximize the probability of securing at

least the minimum benchmark of a second class. As such, it can be interpreted as the university

acting in a risk-averse way. In all of these cases, estimates of the male threshold are significantly

higher, confirming the previous findings. The difference is marginally significant for the outcome

of 60+.

Results for school-type: Finally, we repeat the analysis reversing the roles of gender and

school background, i.e., we use gender as an explanatory variable and test if applicants from in-

dependent schools face a higher threshold than their counterparts who apply from state-funded

schools. The results are reported in the lower panels (marked B) of Tables 3 and 4. Now, we see a

difference of about 1.7 percentage points for the average first year score suggesting that students

from independent schools are held to a higher threshold of expected first year performance. The

magnitude of difference and is less than half the corresponding numbers for gender. In addition,

Table 4B reveals that for certain variants of the outcome, estimated thresholds are slightly higher

for state-school applicants; however, these differences are statistically insignificant.

In order to gain some visual insight into how the threshold discrepancies arise, in Figure 6, we

plot the empirical marginal C.D.F.s of the estimated  () and  ( ) (the left

panel) and those of the estimated  ( _) and  ( _) (the right panel).

It is clear that the male distribution first-order stochastic dominates the female distribution. This

means that even if admissions are centrally conducted and are deterministic conditional on 

(i.e., there is no unobserved heterogeneity across admission tutors), any common acceptance rate

across gender will result in a higher  for the marginal accepted male than the marginal accepted

female. This can be seen in Figure 6, by looking along any fixed cutoff on the vertical axis.

Any such horizontal cut-off line22 will intersect the female C.D.F. at a point that will lie strictly

to the left of the point of intersection with the male C.D.F. We conjecture that the presence

of unobserved heterogeneity across admission tutors does not alter this fundamental dominance

situation and produces the results reported above. A similar, albeit relatively weaker, dominance

situation occurs for school-type, as can be seen in the right-hand graph in Figure 6.

Interpretation of the empirical findings: It would be natural to conjecture that the ob-

served threshold differences arise primarily from the implicit or explicit practice of affirmative ac-

tion, viz., the overweighting of outcomes for historically disadvantaged groups. A second possibility

22For instance, if the top 30% of applicants are accepted among both males and among females, then we should be

looking along the horizontal line at 1-0.3=0.7 on the vertical axis.
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Figure 6:

is that, in face of political and/or media pressure, admission tutors try to equate an application

success rate for, say, males with one for females, which is also consistent with our empirical find-

ings (see Tables 1A and 1B and the last paragraph of the previous section). This would make

the effective male threshold higher if, say, the conditional male outcome distribution has a thicker

right tail (see Figure 6) and tutor perception errors are identically distributed. A third possibility

is that female applicants are set a lower admission threshold in order to encourage more female

candidates to apply in future. Note from Table 1A that the number of female applications is nearly

half the number of male ones. Regardless of what the underlying determinants of the tutors’ behav-

ior are, we can conclude from our analysis that the admission practice under study deviates from

the outcome-oriented benchmark and makes male or independent school applicants face effectively

higher admission thresholds.23

23This conclusion is subject to the obvious caveat that if we use a different outcome, such as performance on the

final examinations, the conclusion may be quite different. Indeed, this is the traditional approach which is taken

by all of the papers cited above in that they all focus the analysis on a single outcome. It would be interesting to

repeat our empirical analysis with performance data in the final examinations; however, data on final year scores

are unfortunately not currently available for the relevant years, as of date. Furthermore, as discussed above, the

preliminary year examination papers are identical across candidates, unlike finals where different students write

exams in different subjects, depending on which areas they chose to specialize in.

31



7 Summary and Conclusion

This paper has proposed a general empirical methodology for testing whether an existing treatment

protocol is economically efficient in the sense of equalizing the treatment threshold for potential

candidates across demographic groups. The focus is on the specific context of admissions to se-

lective universities where allegations of unfairness are frequently made. Specifically, we consider

the situation where a university bases admissions on the applicants’ background data obtained

through application forms and on standardized test and interview performance. We assume that a

researcher can access this background information by acquiring the application form and the perfor-

mance scores and combine these with data on academic outcomes of applicants who were admitted

to the university in past years. Such admission procedures and data situations are extremely com-

mon across universities in the world, making our methodology fairly generally applicable. Further-

more, academic researchers can normally obtain such information, possibly under confidentiality

agreements, from their own institutions.

Once the data are obtained, one can use the analytical framework developed in this paper to

analyze fairness of admissions. In this framework, the admission process is formulated as a sto-

chastic, threshold-crossing model where academically fair (i.e., economically efficient) admissions

correspond to the use of identical thresholds across demographic groups. Under suitable substan-

tive and regularity conditions, we establish how these admission thresholds can be identified from

admissions data for current applicants and performance data of students admitted in the past.

We then propose methods of statistical inference which can be used to test equality of admission

thresholds across demographic groups. Our methods are based on predicted probability of accep-

tance and predicted performance in university rather than directly on covariates. As such, these

methods can be applied to situations where applicants come from diverse backgrounds and report

scores from different aptitude tests (e.g., the A-levels versus the International Baccalaureate) since

the necessary predicted values can be calculated based on candidate-specific covariates. Further-

more, we do not require any information for past applicants who were not accepted. This feature

is convenient since universities normally do not store such data.

We apply our methods to admissions data for a large undergraduate programme of study at

Oxford University and focus on first-year examination performance as the outcome of interest.

These exams consist of common papers which are answered by all students and are blindly marked,

i.e., the marking tutors do not know anything about the students’ backgrounds. We find that the

admission threshold faced by applicants who are male or from independent schools are higher than

those for female or state-school applicants with the gender gap nearly 60% of a standard deviation of

the overall exam performance and the private-state school gap nearly 28%. This contrasts sharply

with average admission rates, which are identical across gender and across school-type, whether or

not we control for other covariates. This finding highlights the usefulness of our approach which,
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by focusing on the expected outcome of the marginal admits, rather than the aggregate admissions

rate, reveals how applicants of different types face effectively different admission standards.

Our paper has left several substantive issues to future research. One, we do not consider peer-

effects in our analysis; so we ignore scenarios where a student with relatively weaker predicted

performance can, nonetheless, create positive externalities for other students and may therefore be

preferred over someone with higher predicted individual performance but a negative externality on

peers. However, in real settings, it is a bit unclear if admission tutors have enough information

regarding peer effects to base their admission decisions on it.24 Secondly, we do not consider a formal

analysis of risk-aversion for the university and only provide a brief illustration in the empirical

section. Indeed, for binary outcomes, like those reported in Table 4, risk cannot play a separate

role and we see qualitatively similar results to those obtained when using the continuous outcome.25

Nonetheless, for use in other applications involving continuously distributed outcomes, this may be

a direction worth further exploration. For example, one can consider a family of utility functions for

the university, indexed by a risk-aversion parameter, and ask what range of values of this parameter

would rationalize the observed admissions data as the consequence of average utility maximization.

Third, it may be useful to perform an empirical analysis using other types of outcome measures —

such as wage upon graduation — as and when such data are available. However, we suspect that

college performance data are much more readily available in general than wage data because the

latter requires costly follow-up of alumni and can entail non-ignorable non-response. Fourth, in our

analysis of fair admissions, we have taken the applicant pool as given. Indeed, one dimension of

enhancing social mobility is to encourage more students from under-represented socio-demographic

groups to apply to elite universities (see the interpretation of our gender-results at the end of the

previous section). It would be useful for future research to further investigate this issue. Finally, in

ongoing work, we are (i) exploring the related but reverse question of how individual characteristics

should be weighed in admission decisions and (ii) investigating how median independence and/or

symmetry conditions can be used to detect inefficient treatment allocation in medical-type settings

where trial data are frequently available but treatment assignment may be significantly affected by

covariates unobserved by the data analyst.

24 In the somewhat different but related context of room-mate assignment policies that explicitly take into account

peer effects, see recent papers by Bhattacharya (2009), Graham (2011) and Carrell, Sacerdote and West (2011).
25The literature on outcome-based analyses of fair treatments, cited above, either considers binary outcomes or

assumes risk neutrality when outcomes are continuous.
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Table 0: Variable labels 

Variable-Label Explanation 
gcsescore Overall score in GCSE, 0-4 

 alevelscore Average A-level scores 80-120      
took subject 1 

 
Whether studied 1st recommended subject at A-
level 

took subject 2 
 

Whether studied 2nd recommended subject at A-
level 

aptitude test Overall score in Aptitude Test 0-100 
essay Score on Substantive Essay 0-100 

Interview Performance score in interview 0-100 
prelim_tot Average score in first year university exam; 0-100 

  offer Whether offered admission           
accept Whether accepted admission offer 

Note: The alevelscore is an average of the A-levels achieved by or 
predicted for the candidate by his/her school, excluding general 
studies.Scores are calculated on the scale A=120, A/B = 113, B/A = 
107, B = 100, C = 80, D = 60, E = 40, as per England-wide UCAS 
norm. 

Note: gcsescore is an average of the GCSE grades achieved by 
the candidate for eight subjects, where A* = 4, A = 3, B = 2, C = 1, 
D or below =0. The grades used are mathematics plus the other 
seven best grades. 

Note: Oxford recommends that candidates study two specific 
subjects at A-levels for entry into the undergraduate programme 
under study. Subject 1 and Subject 2 are dummies for whether an 
applicant did study them at A-level. 
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Table 1A. Summary Statistics by Gender

Variable Obs Mean Obs Mean Difference p-value
Female Male

gcsescore 365 3.83 620 3.75 0.08 0
took subject 1 365 0.69 620 0.68 0.01 0.54
took subject 2 365 0.48 620 0.52 -0.04 0.27

alevelscore 365 119.73 620 119.44 0.29 0.01
aptitude test 365 62.53 620 65.24 -2.71 0

essay 365 63.23 620 64.49 -1.26 0
interview 365 64.68 620 65.29 -0.61 0.04
prelim_tot 119 60.98 206 61.89 -0.92 0.04

offer 365 0.363 620 0.357 0.01 0.41
accept 365 0.34 620 0.34 0.00 0.5

Table 1B. Summary stats by School-Type

Variable Obs Mean Obs Mean Difference p-value
State Independent

gcsescore 548 3.70 437 3.87 -0.17 0
took subject 1 548 0.64 437 0.73 -0.09 0.02
took subject 2 548 0.53 437 0.49 0.04 0.004

alevelscore 548 119.60 437 119.73 -0.13 0.02
aptitude test 548 63.82 437 64.94 -1.12 0.0015

essay 548 64.06 437 64.07 -0.01 0.5
interview 548 65.02 437 65.17 -0.15 0.65
prelim_tot 180 61.15 145 62.10 -0.95 0.03

offer 548 0.361 437 0.357 0.00 0.5
accept 548 0.33 437 0.35 -0.01 0.46

Note: The data pertain to two cohorts of applicants, broken up by gender. The
variable names are explained in table 0. Column 6 records the p-value
corresponding to a test of equal means across gender against a one-sided
alternative. Gender differences in unconditional offer rates (highlighted) are
seen to be statistically indistinguishable from zero at 5%. 

Note: The data pertain to two cohorts of applicants, broken up by type of high-
school attended prior to applying. The variable names are explained in table 0.
Column 6 records the p-value corresponding to a test of equal means across
school-type against a one-sided alternative. Differences in unconditional offer
rates across school-types (highlighted) are seen to be statistically
indistinguishable from zero at 5%. 
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Table 2A. Probit of receiving offer

Regressor Coef. Std. Err. z p-value

gcsescore 0.26 0.25 1.04 0.30
alevelscore 0.08 0.06 1.26 0.21

took subject 1 -0.06 0.17 -0.33 0.74
took subject 2 -0.25 0.15 -1.65 0.10
aptitude test 0.09 0.01 7.01 0.00

essay 0.01 0.01 0.44 0.66
interview 0.23 0.02 10.59 0.00

indep -0.13 0.15 -0.88 0.38
male -0.18 0.16 -1.13 0.26

N=985, Pseudo-R-squared=0.5

Table 2B. Regression of first-year score

Coefficient Std. Err. t p-value
gcsescore 4.19 2.42 1.73 0.09

alevelscore 0.79 0.40 1.96 0.05
took subject 1 0.24 1.11 0.22 0.83
took subject 2 -1.25 0.86 -1.45 0.15
aptitude test 0.28 0.07 4.15 0.00

essay -0.02 0.07 -0.30 0.76
interview 0.17 0.10 1.76 0.08

indep -0.01 0.92 -0.01 0.99
male 1.56 0.89 1.75 0.08

N=325, R-squared=0.16
Note: The data pertain to two cohorts of applicants. The variable names are
explained in table 0. The table presents the coefficients in a linear regression
(with heteroskedastic errors) of performance in first-year examinations at
Oxford on pre-admission characteristics. The last column reports a 2-sided p-
value corresponding to a test of zero effect. 

Note: The data pertain to two cohorts of applicants. The variable names are
explained in table 0. The table presents the coefficients in a probit regression of
getting an offer. The last column reports a 2-sided p-value corresponding to a
test of zero effect. 
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Table 3A. Thresholds by Gender

Outcome mean=61.54, std dev=5.2
Method Male-thld Fem-thld Male-Fem p-value

Scale=0.5 59.16 55.5 3.66 0.0004
Scale=1.00 59.36 55.67 3.69 0.0004

Scale=2 59.91 56.15 3.76 0.0001
Parametric 60.51 56.86 3.65 0.0004

Note: This table presents the estimated admission thresholds for expected
performance by gender. These thresholds are calculated via equation (5) in the
text where mu-hat and p-hat are estimated via linear regression and probit
respectively and the threshold is obtained via a nonparametric regression of the
estimated muhat on the estimated phat evaluated at phat equals one-half. Each
of the first three rows corresponds to a different choice of bandwidth. The
middle, highlighted bandwidth is the one which minimizes the cross-validation
criteria and the first and third rows correspond respectively to one-half and
twice the middle bandwidth. The last row reports results from a fully parametric
analysis where the threshold is obtained via a linear regression of the estimated
muhat on the estimated phat and its square evaluated at phat equals a half. The
last column reports a 2-sided p-value corresponding to a test of zero effect. 
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Table 3B. Thresholds by School-type

Outcome mean=61.54, std dev=5.2
Method Indep thld State thld Ind-State p-value

Scale=0.5 60.21 58.61 1.6 0.08
Scale=1.00 58.55 56.84 1.71 0.05
Scale=2.00 59.44 57.78 1.66 0.04
Parametric 60.34 58.7 1.64 0.05

Note: This table presents the estimated admission thresholds for expected
performance by school-type. These thresholds are calculated via equation (5) in
the text where mu-hat and p-hat are estimated via linear regression and probit
respectively and the threshold is obtained via a nonparametric regression of the
estimated muhat on the estimated phat evaluated at phat equals one-half. Each
of the first three rows corresponds to a different choice of bandwidth. The
middle, highlighted bandwidth is the one which minimizes the cross-validation
criteria and the first and third rows correspond respectively to one-half and
twice the middle bandwidth. The last row reports results from a fully parametric
analysis where the threshold is obtained via a linear regression of the estimated
muhat on the estimated phat and its square evaluated at phat equals a half. The
last column reports a 2-sided p-value corresponding to a test of zero effect. 
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Table 4A. Other outcomes by Gender

Outcome Male-thld Fem-thld Male-Fem p-value
60+ (mean 0.52) 0.5 0.2 0.3 0.02
55+ (mean 0.78) 0.78 0.55 0.23 0.06

Avg (mean 61.54) 59.36 55.67 3.69 0.0004

Table 4B. Other outcomes by School-type

Outcome Indep-thld State-thld Indep-State p-value
60+ (mean 0.52) 0.58 0.35 0.23 0.24
55+ (mean 0.78) 0.62 0.71 -0.09 0.65

Avg (mean 61.54) 58.55 56.84 1.71 0.03
Note: This table presents the estimated admission thresholds for expected
performance by school-type. Three different measures of performance are
considered, viz., securing at least a high second class mark (60+), at least a
second class mark (55+) and the actual score out of 100 (avg.). The mean of
each performance measure across the entire sample is reported in parantheses.
The thresholds are calculated via equation (5) in the text where mu-hat and p-
hat are estimated via linear regression and probit respectively and the threshold
is obtained via a nonparametric regression of the estimated muhat on the
estimated phat evaluated at phat equals one-half. The optimal bandwidth is
used. The last column reports a 2-sided p-value corresponding to a test of zero
effect.

Note: This table presents the estimated admission thresholds for expected
performance by gender. Three different measures of performance are
considered, viz., securing at least a high second class mark (60+), at least a
second class mark (55+) and the actual score out of 100 (avg.). The mean of
each performance measure across the entire sample is reported in parantheses.
The thresholds are calculated via equation (5) in the text where mu-hat and p-
hat are estimated via linear regression and probit respectively and the threshold
is obtained via a nonparametric regression of the estimated muhat on the
estimated phat evaluated at phat equals one-half. The optimal bandwidth is
used. The last column reports a 2-sided p-value corresponding to a test of zero
effect. 
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A Technical Appendix

The appendix contains three subsections: subsection A.1 presents the proof of (1) in Proposition

1; subsection A.2 formally states and derives the asymptotic distribution of the semiparametric

estimator of , on which our application is based and, finally, subsection A.3 states and derives

the distribution theory for the fully nonparametric estimator of .

A.1 Proof of Proposition 1

Consider any feasible rule  (·) satisfying the budget constraint. Since  (·) satisfies the budget
constraint with equality (recall the definition of  and ) and  (·) is feasible, we must haveR

∈W
 ()  ()  () =  ≥ R

∈W
 ()  ()  () (7)

implying that R
∈W

 ()
£
 ()−  ()

¤
 () ≥ 0 (8)

Let W () :=
R
∈W  () () ()  (). Now, the productivity resulting from  (·) differs

from that from  (·) by

W
¡


¢−W ()

=
R

∈W

£
 ()−  ()

¤
 () [ ()− ]  () + 

R
∈W

£
 ()−  ()

¤
 ()  ()

≥ R
∈W

£
 ()−  ()

¤
 () [ ()− ]  ()

=
R

()

£
 ()−  ()

¤
 () [ ()− ]  ()

+
R

()

£
 ()−  ()

¤
 () [ ()− ]  ()

=
R

()

[1−  ()] [ ()− ] ()  () +
R

()

 () [ −  ()] ()  () ≥ 0 (9)

where the first inequality holds by (8) and that   0. Therefore, we have W
¡


¢ ≥ W () for

any feasible  (·), and the solution  (·) given in (1) is optimal.
To show the uniqueness, consider any feasible rule  (·) which differs from  (·) on some set

whose measure is not zero, i.e.,
R
∈S()  ()  0 for S () := { ∈W |  () 6=  ()}. Now,

assume that W
¡


¢
=W () for this  (·). In this case, since the last equality on the RHS of (9)

holds with equality,  (·) must take the following form:

 () =

(
1 if  ()  ;

0 if  ()  

for almost every  (with respect to  ). This implies that  () =  () for almost every 

except when  () = . Since the measure of S () is not zero, we must have  () 6=  () for
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 () = , and S () = { ∈ W |  () = }, which, together with the budget constraint, implies
that    () when  () = . However, this in turn implies that we have a strict inequality

in the third line on the RHS of (9), which contradicts our assumption. Therefore, we now have

shown that W
¡


¢
W () for any feasible  (·) with R

∈S()  ()  0, leading to the desired

uniqueness property of  (·) in the stated sense. ¥

A.2 Asymptotic results for the semiparametric case

In this and next subsections, we often write  = ( ) (as defined in Section 3) for nota-

tional simplicity. We suppose that  consists of 

 and  

 , i.e.,  =
¡
 

 



¢
, where the

1-dimensional random (row) vector  
 is continuously distributed with its support 

(⊂ R1)

compact; and the 2-dimensional random (row) vector  
 takes discrete values with the support

 (the number of points of  is finite). Note that W =  ×  in the notation of previous sec-

tions. We let the last one or more components of the vector  
 be , denote by 

 the support

of  (e.g., if we are interested only in the gender difference, 
 = {}).

In what follows, we often write ( ) =  or
¡
 

¢
;  ( ) =  () or 

¡
 

¢
; and

 ( ) =  () or 
¡
 

¢
. For a vector/matrix  whose elements are { : 1 ≤  ≤ ;

1 ≤  ≤ } with  and  some positive integers, |||| := max1≤≤; 1≤≤ | |. And, we often
write 0 = 12 below in proofs.

As stated previously, our analyses are based on the estimator of the form in (5). However, to

consider the semi and non parametric cases separately, we below re-define our estimators. Now, we

consider the following semiparametric estimator (while the nonparametric one is presented in the

next subsection):

̂ () :=
(1)

X

=1


³
̄
³
; ̂

´
− 12

´
̄
³
; ̂

´
1 { = }

(1)
X

=1


³
̄
³
; ̂

´
− 12

´
1 { = }

 (10)

where ̄ (; ) (= ̄ ( ; )) is a (semi) parametric estimator of  () with a finite dimensional pa-

rameter ; ̂ is a consistent estimator for a (pseudo) true parameter 
0
; ̄

 (; ) (= ̄ ( ; ))

is a (semi) parametric estimator of  (); and , ̂ and 
0
 are defined analogously. We may use

various (semi) parametric models, e.g., a probit or logit model for  () and a linear (regression)

model for  (), whose requirements presented in Assumptions 8 and 9 are quite mild.

Asymptotic behavior of the semiparametric estimator: To investigate the asymptotic

properties of (10), we consider the following estimator:

̃ () :=
(1)

X

=1


¡
̄
¡
; 

0


¢− 12¢ ̄ ¡; 
0


¢
1 { = }

(1)
X

=1


¡
̄
¡
; 

0


¢− 12¢1 { = }
 (11)
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This is not an feasible estimator, requiring (pseudo) true objects ̄
¡
; 0

¢
and ̄

¡
; 0

¢
. How-

ever, we below show that the feasible and infeasible estimators, ̂ () and ̃ () share the same

asymptotic distribution.

To derive the asymptotic distribution of the infeasible estimator ̃ (), we work with the

following conditions:

Assumption 5 Let

 ( ) := 
£
 () |  () =   = 

¤
= 

£
 ( ) |  ( ) = 

¤


For each  ∈ ,  (· ) is twice continuously differentiable on [0 1]. The probability function
 ( ) of random variables  ()(= Pr[ = 1|]) and  exists ( ( )  = Pr[ () ∈
 = ]); and for each  ∈ ,  (· ) is twice continuously differentiable on [0 1].

Assumption 6 The kernel function  (·) (R → [0∞)) is of bounded variation and satisfies the
following conditions:

R
R ()  = 1;

R
R  ()  = 0; there exists some constant ̄ ∈ (0∞)

such that sup∈R () ≤ ̄ and
R
R 

2 | ()|  ≤ ̄.

Assumption 7 There exist some 0 and 0 such that ̄ (; ) =  () and ̄
¡
; 0

¢
=  ().

Assumptions 5-6 are standard technical requirements for kernel-based estimation. Note that

under Assumptions 1, 2-(ii), 2-(iii) and 4, there exists some constant   0 such that

inf()∈[12−12+]×  ( )  0 (12)

Note also that given the correct specification condition in Assumption 7, ̃ () is identical to the

infeasible estimator ̃ (defined in (6), Section 5).

Lemma 1 Suppose that Assumptions 1, 2 and 2-7 hold. Then, it holds that as →∞ and → 0

with →∞ and 5 =  (1),

√

£
̃ ()−  − 2B ()

¤ →  (0V ()) 

for each  ∈ , where

B () :=

Z
R
2 () 

£
() ( ) ()  ( )  ( ) + (12)

¡
22

¢
 ( )

¤¯̄̄̄
=12

;

V () :=

Z
R
2 () Var [ ( ) | ( ) = ]  ( )

¯̄̄̄
=12



Given the stated conditions, the result of this lemma is quite standard (see, e.g., Ch. 3 of Li and

Racine, 2007) and therefore we omit the proof. We have supposed correct parametric specifications

here, but even when the parametric models are misspecified, the lemma’s result in still holds with
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slight modification. In such a case, objects in Assumption 5 and the lemma, ,  ( )  ( ),

B () andV (), should be interpreted in terms of pseudo true objects, say, the parameter  should

be interpreted as [̄
¡
; 

0


¢ |̄ ¡; 
0


¢
= 12  = ], rather than the "true" one considered

in Sections 4 and 5. Note that the same remark applies to the result in Theorem 1 below.

We now analyze our semiparametric estimator ̂ () under the following conditions:

Assumption 8 (i) The estimator ̂ is consistent for the (pseudo) true parameter 
0
 with

|̂ − 0| = (1
√
) (13)

(ii) There exists some compact set Θ such that 
0
 is in the interior of Θ; for each  ∈  × ,

̄ (; ·) is twice continuously differentiable on Θ;

sup
∈×; ∈Θ

|| () ̄ (; ) || ∞; and sup
∈×; ∈Θ

|| ¡20¢ ̄ (; ) || ∞

Assumption 9 The estimator ̂ is consistent for the (pseudo) true parameter 
0
 with

sup()∈× |̄
³
; ̂

´
− ̄

¡
; 0

¢ | =  (1
√
)

The condition on ̂ in Assumption 9 is fairly weak. We do not presuppose any data gener-

ating mechanism on the past cohort data {(
  


 


 

  

 )}, except for the

√
-consistency

of the function, which should be satisfied by many (semi-)parametric models and estimators. The

conditions on ̂ in Assumption 8 are slightly stronger, but are also satisfied in many cases. In

particular, for various estimators, (i) of Assumption 2 and some boundedness condition on relevant

functions are often sufficient for the strong
√
-consistency in (13) (see, e.g., the strong law of large

numbers as found in Ch. 20 of Davidson, 1994). Assumptions 8 and 9 are respectively satisfied by

probit and linear regression models (employed in Section 6).

To show the asymptotic equivalence of ̂ () and ̃ (), we also impose the following condition

on  (·).

Assumption 10 The kernel function (: R → [0∞)) is twice continuously differentiable whose
support is a compact interval in R.

This assumption rules out some class of kernel functions, e.g., the normal kernel. While we

might be able to relax the compactness condition by imposing some other explicit condition on the

tail decay (say, Assumption 3 in Hansen, 2008), we maintain this for the sake of simplicity in our

proof.

Theorem 1 Suppose that Assumption 10 and the same conditions as in Lemma 1 hold. Then, it

holds that as →∞ and → 0 with 3 →∞,
√

£
̂ ()− ̃ ()

¤
=  (1) 
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Therefore, additionally if 5 =  (1) (as →∞ and → 0), the asymptotic bias and distribution

of ̂ () are the same as those for ̃ () given in Lemma 1.

Proof. First, consider the convergence of the numerator of (10). We have the following decompo-

sition:

(
√
)

X

=1

h


³
̄
³
; ̂

´
− 0

´
̄
³
; ̂

´
−

¡
̄
¡
; 

0


¢− 0
¢
̄
¡
; 

0


¢i
= A + B + C (14)

where

A := (
√
)

X

=1


¡
̄
¡
; 

0


¢− 0
¢ h

̄
³
; ̂

´
− ̄

¡
; 

0


¢i
1 { = } ;

B := (
√
)

X

=1

h


³
̄
³
; ̂

´
− 0

´
−

¡
̄
¡
; 

0


¢− 0
¢i

̄
¡
; 

0


¢
1 { = } ;

C := (
√
)

X

=1

h


³
̄
³
; ̂

´
− 0

´
−

¡
̄
¡
; 

0


¢− 0
¢i

×
h
̄
³
; ̂

´
− ̄

¡
; 

0


¢i
1 { = } 

By Assumption 9, we can easily show that A =  (
√
). To consider the convergence rate of

B, look at
̄
³
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´
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uniformly over , which follows from the Taylor expansion and Assumption 8. Therefore,
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where ̃ is on the line segment connecting ̂ to 0 (̃ may depend on ) while 

¡
−1

¢
s on

the RHS are uniform over . By Assumption 10, there exist some function K̄ (·) and some positive
constant ̄ ( 0) such that sup||≤̄ | 00 (+ )| ≤ K () for any  ∈ R, sup∈RK ()  ∞ andR
RK ()   ∞. Since ̄

³
; ̃

´
 = ̄

¡
; 

0


¢
 +  (1) uniformly over , which follows

from Assumption 8 and the condition that
√
 → ∞, for any  large enough, it almost surely

holds that ¯̄̄
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³³
̄
³
; ̃

´
− 0

´

´¯̄̄
≤ K

¡¡
̄
¡
; 

0


¢− 0
¢

¢
 (16)

uniformly over .26 Now, we let

 := −2 0 ¡¡̄ ¡; 
0


¢− 0
¢

¢
̄
¡
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¢
1 { = } () ̄

¡
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0


¢


26This is because it holds that for each  ∈ Ω∗ (Ω∗ is an event with Pr (Ω∗) = 1) and for any  large enough,
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| ≤ ̄.
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Then, by using (15) and (16) and noting the uniform boundedness of the function ̄
¡·; 0¢, we

can consider the following bound:

|B| ≤
√
|| £

¤ || × ||̂ − 0||+
√
||−1P

=1

©
 −

£


¤ª || × ||̂ − 0||
+(
√
3)

P
=1K

¡¡
̄
¡
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0


¢− 0
¢

¢×

¡
−1

¢
 (17)

The first term on the RHS of (17) is  (
√
), since || £

¤ || =  (1), which follows from the stan-

dard change-of-variable arguments for kernel-based estimators and the uniform boundedness of rele-

vant functions. The second term on the RHS of (17) is (1
√
) since −1

P
=1

©
 −

£


¤ª
=

 (1
√
2), which can be obtained by standard arguments for kernel-based estimation of deriv-

atives (as those in Theorem 6 and its proof of Hansen, 2008). Finally, the last term of the RHS

of (17) is  (1
√
3), since we have [K

¡¡
̄
¡
; 

0


¢− 0
¢

¢
] = () uniformly over , which

follows from the standard change-of-variable arguments and the kernel-like property of K stated

above. We now have shown that

B =  (
√
) + (1

√
) + (1

√
3) =  (

√
+ 1

√
3)

We can easily show that C =  (1
√
3) by using (15) and Assumption 9, and omit details.

From the expression (14) and arguments above, we can see that the scaled version of the numerator

of (10) can be written as

(
√
)

X

=1


¡
̄
¡
; 

0


¢− 0
¢
̄
¡
; 

0


¢
+ (

√
+ 1

√
3) (18)

By arguments analogous to those for B, we can also write the denominator of (10) as

(1)
X

=1


¡
̄
¡
; 

0


¢− 0
¢
1 { = }+ (

√
) + (1

√
3)

which, together with (18), leads to the desired result.

A.3 Asymptotic results for the fully nonparametric case

To consider the nonparametric case, we explicitly present the forms of our first-step estimators of

 () and  (). For the estimation of  (), recall that we have assumed the availability of the

past cohort data {(
  


 


 

 

 )}=1 in Section 5, where we let  =  for simplicity. For

a variable from the past cohort, we write 
 = (


 


 ) = (

 

 ) in the same manner as

for one from the current cohort (as explained in the previous subsection).

Now, our nonparametric estimator of  is defined as:

̂ () :=
(1)

X

=1
 (̂− ()− 12) ̂− ()1 { = }

(1)
X

=1
 (̂− ()− 12)1 { = }

 (19)
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where ̂− () is a so-called leave-one-out nonparametric estimator of  () and  () is an esti-

mator of the Nadaraya-Watson type as follows:

̂− () :=

X
1≤≤;  6= 

³
 

 − 
´
1
n
 

 = 
o
X

1≤≤;  6=

¡
 

 − 
¢
1
©
 

 = 
ª ; (20)

̂ () :=

X

=1


³



 − 

´
1
n



 = 

o
 
 

X

=1


³



 −

´
1
n



 = 

o



; (21)

 () :=  () 1 =  (1     1) 
1 for  ∈ R1 and   0;  (·) is a kernel function

(R1 → R);  ( 0) is a smoothing parameter/bandwidth;  () is defined analogously;  (·) is
another kernel function (R1 → R) and  is another bandwidth.

Remark 7 We let bandwidths,  and , be common for all components of continuously distrib-

uted variables. This is mainly for (notational) simplicity, and we may use bandwidth matrices

(as long as the rate conditions provided below are satisfied), Ξ, Ξ ∈ R1×1 , allowing for dif-

ferent bandwidths for different components. In this case, 

³
 

 −
´
in (20) is replaced by


³
Ξ−1

³
 

 − 
´´

det (Ξ), where det () is the determinant of  (an analogous argument

applies to (21)).

Remark 8 The suggested estimators (19), (20) and (21) are of the form of so-called frequency

estimators (see, e.g., Ch. 3 of Li and Racine, 2007), which do not use any smoothing for discrete

variables. The use of these estimators is only for simplicity, and we can instead think of estimators

smoothing discrete variables, as found in Ch. 4 of Li and Racine (2007).

Asymptotic behavior of the nonparametric estimator: We here show that the asymptotic

distribution of ̂ () is determined by that of ̃ (recall that ̃ = ̃ () under Assumption 71

and the asymptotic property of ̃ () is given in Lemma 1). For this purpose, we work with the

following conditions:

Assumption 11 There exists the probability function of (=
¡
 

 



¢
= ()), i.e., a func-

tion  () (= 
¡
 

¢
=  ( )) satisfying 

¡
 

¢
 = Pr

£
 

 ∈  
 = 

¤
. For each

 ∈ , the functions 
¡· 

¢
and 

¡· 
¢
are compactly supported on . Let  be some

positive integer with  ≥ 2. For each  ∈ , 
¡· 

¢
and 

¡· 
¢
are -times continuously

differentiable on .

Assumption 12 There exists the probability function  () of (
  

 ) = (

 


  

 ) for


 = 1, i.e., a function  () (= 

¡
 

¢
=  ( )) satisfying 

¡
 

¢
 = Pr[


 ∈



 =  

 = 1]. For each  ∈ , the functions 
¡· 

¢
and 

¡· 
¢
are compactly
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supported on . Let  be some positive integer with  ≥ 2. For each  ∈ , 
¡· 

¢
and


¡· 

¢
are -times continuously differentiable on .

Assumption 13 The kernel function  (·) (R1 → R) satisfies the following conditions: the sup-

port (⊆ R1) of  is bounded;  (·) is continuously differentiable on R1;
R
R1  ()  = 1; and

 (·) is the th-order kernel, i.e.,
R
R1 [

N
=1 ] ()  = 0 for  = 1     ( − 1).

Assumption 14 The kernel function  (·) (R1 → R) satisfies the following conditions: the sup-

port (⊆ R1) of  is bounded;  (·) is continuously differentiable on R1; RR1  ()  = 1

and  (·) is the th-order kernel, i.e.,
R
R1 [

N
=1 ] ()  = 0 for  = 1     ( − 1).

Assumption 15 (i) There exists some constant 1 ∈ (0∞) such that

1 ≤ inf()∈× 
³
 

´
and 1 ≤ inf()∈× 

³
 

´


where  and  are the probability functions defined in Assumptions 11 and 12, respectively. (ii)

There exists some set ◦ such that if  = 1, then

 
 ∈ 

◦ ( 

where any boundary points of ◦ are in the interior of .

Assumption 16 (i) {} is geometrically -mixing (i.e.,  ≤ ̃ exp
n
−̃

o
for some positive

constants ̃ and ̃). (ii) {(
  


 


 

 )}=1 is first-order stationary and geometrically -

mixing, and there exists some constant such that | 
 | ≤ 2. (iii) () is independent of

(
  


 


 

 ) for any  and .

Assumptions 11-14 are quite standard for establishing uniform convergence results for ̂− ()

and ̂ () (see Lemmas 2 and 3 below). Assumptions 13-14 require that the kernels,  and  ,

are of higher order (bias reducing) of orders  and , respectively. These, together with the

differentiability conditions in Assumptions 11-12, are used to guarantee that the estimation errors

due to the first step are negligible in the second step.

We impose Assumption 15 to avoid the so-called boundary-bias problem. Our first-step non-

parametric estimators ̂− () and ̂ () are of the Nadaraya-Watson type (with symmetric kernel

functions), and have slower uniform convergence rates around the boundary points of the support

(see, e.g., Bouezmarni and Scaillet, 2005).27 (ii) of Assumption 15 is similar to that imposed in Ahn

and Powell (1993), called "exogenous trimming," which, together with the condition (i), is useful

to allow us to avoid the so-called random-denominator problem. Note that these two conditions

27The boundary bias may be avoided by using asymmetric kernels as in Bouezmarni and Scaillet (2005) and

Gospodinov and Hirukawa (2012), or by usimg the local polynomial method as in Masry (1996).
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are imposed only for simplicity. We may be able to proceed without (i) and/or (ii) of Assumption

15. However, to do so, we will require a trimming device and more intricate conditions on the

bandwidths and trimming parameters.

The conditions in Assumption 16 control for the data dependence structure. The geometric

mixing conditions in (i) and (ii) allows us to derive sharp convergence rates of the first-step estima-

tors. We can relax these as in Hansen (2008), Kristensen (2009) and Kanaya (2012), allowing for

polynomial mixing cases (with relatively strong dependence of sequences). However, we consider

only the geometric case for simplicity, where we can work with less complicated restrictions on

bandwidth choices.

Given these conditions, we obtain the following result:

Theorem 2 Suppose that Assumptions 1, 2, 2-6 and 11-16 hold. Let

∆ : =

q
(log)2 1 +

√
+
√
[


 + 

q
(log) 1 ]

+(1

q
521 ) +

√



 + 

q
121 + (


 ) +

p
3[


 +

q
(log) 1 ]

2

+
p
[


 +

q
(log) 1 ][


 +

q
(log) 1 ]

It holds that as →∞, and   and  → 0 with [log(log)]4 (log)2 1 → 0, (log) 21 →
0, and [log(log)]4 (log)2 1 → 0,

√
[̂ ()− ̃] =  (∆) for each  ∈ 

Therefore, additionally if 5 =  (1) and ∆ → 0, the asymptotic bias and distribution of ̂ ()

are the same as those for ̃(= ̃ ()) given in Lemma 1.

While the rate conditions of the bandwidths   and  for the asymptotic equivalence between

̂ () and ̃ may look somewhat complicated, they can be easily satisfied when  and  are

large relatively to 1 (i.e., the orders of the kernel functions are high enough and the relevant

functions are sufficiently smooth). As an example, consider  = (115(log)), which is slightly

oversmooth as we did in our empirical application. In this case, if we set 

 = (125

√
log)

and 

 = (125

√
log) with

(log)3 151 → 0; 1351 → 0; and (log)2 151−2 → 0 (22)

all the bandwidth conditions of the theorem are satisfied. As apparent from (22), we need more

restrictive conditions on the shrinking rate of  than on that of  ( need to be larger). This is

because the estimator ̂− () is in the inside of the kernel function  and it need to have a faster

convergence rate than ̂ ().

To prove the above theorem, we will utilize the following two lemmas, which derive (so-called)

uniform Bahadur representations and convergence rates of the first-step nonparametric estimators:
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Lemma 2 Suppose that Assumptions 1, 2, 2-6, 11, 13, 15 and 16-(i) hold. Let →∞ and  → 0

with [log(log)]4 (log)2 1 → 0. Then, it holds that

̂− ()−  () = (1)
X

1≤≤;  6= 

¡
 

 − 
¢
1{ 

 = } [ −  ()]  ()

+ (1)
X

1≤≤;  6= 

¡
 

 −
¢
1{ 

 = } [ ()−  ()]  ()

+([

 +

q
(log) 1 ]

2); (23)

uniformly over  ∈ {1     } and  ∈ ◦ × ; and that

̂− ()−  () = (

 +

q
(log) 1 ) (24)

uniformly over  ∈ {1     } and  ∈  × , where  () is the probability function defined in

Assumption 11.

Lemma 3 Suppose that Assumptions 12, 14, 15 and 16-(ii) hold. Let  → ∞ and  → 0 with

with (log) 1 → 0. Then, it holds that

̂ ()−  () = (1)
X

=1


(

 − )1{

 = }
 [


 −  ()] ()

+ (

 + 

q
(log) 1 ); (25)

̂ ()−  () =  (

 +

q
(log) 1 ) (26)

uniformly over  ∈ ◦ × , where  () is the probability function defined in Assumption 12.

The proofs of these lemmas are provided below.28 Now, we start the proof of Theorem 2.

Proof of Theorem 2. First, we look at the denominator of (19). By applying the mean-value

theorem,

(1)
X

=1
 (̂− ()− 0)1 { = } = I + J

where

I : = (1)
X

=1
(( ()− 0) )1 { = } ;

J : =
¡
12

¢X

=1
 0((̌− ()− 0))1 { = } [̂− ()−  ()] ;

28To establish the almost sure convergence result, we impose a slightly stronger condition on the bandwidth in

Lemma 2 than in Lemma 3. The almost sure result might not be necessarily required, but it turns out to be very useful.

In particular, it allows us to obtain a sharp convergence rate between  ( ()− 12) and  (̂− ()− 12)
without some extra rate loss due to . The almost sure result is also useful for us to avoid the boundary bias problem

under a simple compact-support condition on . For these technical points, see the arguments in deriving (27). Note

also that except for (24), the uniform rates are established over the set ◦×, where ◦ is some subset of 
 given in

Assumption 15. We may be able to derive uniform rates over ×. However, under the compact-support condition

of  and the exogenous trimming condition ((ii) of Assumption 15), the uniform results over ◦ are sufficient for our

purpose.
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and ̌− () is on the line segment connecting ̂− () to  (). We below find the probability

bounds of I and J. Now, by standard arguments for kernel-based estimators (see, e.g., Ch. 3 of

Li and Racine, 2007), we can show that I =  (0 )+ (
2+1

√
). To find the bound of J,

we use arguments analogous to those for (16) in the proof of Theorem 1. That is, we can find some

kernel-like dominant function K∗ (·) for  0 (·) (as K (·) for 00 (·)) and use this function, to obtain

J ≤
¡
12

¢P
=1K∗(( ()− 0))×max1≤≤ sup∈× |̂− ()−  ()|

=  (1)×(

 +

q
(log) 1 ) (27)

Now, we have shown that

(1)
X

=1
 (̂− ()− 0)1 { = }

=  (0 ) + (
2 + 1

√
+ (1) [


 +

q
(log) 1 ]) (28)

where the reminder term is  (1) under the stated conditions on the bandwidths.

Next, we look at the numerator of (19):

(
√
)

X

=1
 (̂ ()− 0) ̂

 () = A +B +C (29)

where

A := (
√
)

X

=1
 ( ()− 0)

£
̂ ()−  ()

¤
1 { = } ;

B := (
√
)

X

=1
[ (̂− ()− 0)− ( ()− 0)]

 ()1 { = } ;
C := (

√
)

X

=1
[ (̂− ()− 0)− ( ()− 0)]

£
̂ ()−  ()

¤
1 { = } 

We can show the following results:

A =  (

q
(log)2 1 +

√
+
√
[


 + 

q
(log) 1 ]); (30)

B =  (
√
+ (1

q
521 ) +

√



 )

+ (

q
121 + (


 ) +

p
3[


 +

q
(log) 1 ]

2); (31)

C =  (
p
[


 +

q
(log) 1 ][


 +

q
(log) 1 ]) (32)

whose proofs are provided below. Now, by the results (28)-32 and the boundedness condition of

 ( ) (stated in (12)), we can obtain the conclusion of the theorem.

The convergence rates of the term A in (30). Recall that if  
 ∈ ◦, then  = 0 and

 () = 0 (by (ii) of Assumption 15). In this case, we have

 ( ()− 0) = −1 (−0) = 0 for  ( 0) small enough, (33)
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since the support of  is bounded and −0(= −12) is large enough, and thus, for  small
enough, we can restrict our attention to the case  

 ∈ ◦. Therefore, by using (25) in Lemma 3,

we can obtain the following expression:

A = A1 +A2

+ (
√
)

X

=1
 ( ()− 0)1 { = } × (


 + 

q
(log) 1 ) (34)

where

A1 : = (
√
)

X

=1



£
 
 −  (

 )
¤
−1

X

=1

£
(


 )− ̄(


 )
¤
;

A2 : = (
√
)

X

=1



£
 
 −  (

 )
¤
̄(


 );

 () : =  ( ()− 0)
( − 

 )1{ = 
 } () ; ̄ () :=  [ ()] 

We below derive the convergence rates of the three terms on the RHS of (34).

To find the rate of A1, let

 () : = (1)
X

=1

£


¡




¢− ̄
¡




¢¤
;

̄ () : =  ()× 1{ () ≤
q
(log)2 1 }

Then, we can write

A1 = (
√
)

X

=1



£
 
 −  (

 )
¤
(


 )

+ (
√
)

X

=1



£
 
 −  (

 )
¤
̄(


 )

+ (
√
)

X

=1



£
 
 −  (

 )
¤
(


 )1

©
(


 ) 

q
(log)2 1 } (35)

Note that  () is the sum of geometrically -mixing and zero-mean variables with the ker-

nel weight of  and  . Therefore, given that [log(log)]4 (log)2 1 → 0, we can show

that sup∈× | () | = (

q
(log) 1 ) (by arguments as in the proof of Theorem 3 in

Hansen, 2008; see also our discussions in deriving (60) in the proof of Lemma 2). Therefore, for 

large enough and for any  ∈  × , it almost surely holds that

1{ () 

q
(log)2 1 } = 0 (36)

This means that for  large enough, the second term on the RHS of (35) is zero almost surely,

implying that the convergence rate of A1 is determined by the first term on the RHS of (35).

Now, let

 := 


£
 
 −  (

 )
¤
̄(


 )

and note that by the definition of ̄ (), as well as by the boundedness of 
 (·) and  

 (Assump-

tions 12 and 16-(ii)), there exists some constant  such that  ≤ 

q
(log)2 1 . Then, look
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at

[
¯̄̄P

=1 

¯̄̄2
]
³
= [

¯̄̄P
=1


 [


 − 

¡




¢
]̄

¡




¢¯̄̄2
]
´

=
P

=1[
2
 ] + 2

PP
1≤≤

[]

≤ [21] + 2
PP
1≤≤

4− × 2 (log)2 1

≤ [2 (log)2 1 ] + 8
P

=1 ̃ exp{−̃} × 2 (log)2 1 = ((log)2 1 ) (37)

where the first inequality uses the independence between (
  


 


 

 ) and () (Assump-

tion 16-(iii)) and the Billingsley inequality (see, e.g., Corollary 1.1 in Bosq, 1998), and the last

inequality holds by noting the geometric mixing condition (Assumption 16) and the fact thatP
=1 exp{−̃} =  (1) for any ̃  0. From (35)-(37), we see that A1 =  (

q
(log)2 1 ).

Next, to consider the rate of A2, we look at

̄ () =  [ ()] = [ ()  ()] [1 +  (1)] uniformly over  ∈  ×  (38)

where  ( ) is the probability function of 
¡
 

 



¢
and , i.e.,

(  ) = Pr[( 
  

) ∈  
 ∈  

 = ]

This result can be easily shown by using the differentiability and boundedness of  ( ) and  (),

as well as the stated conditions on the kernel functions.29 Noting that ̄ () is uniformly bounded,

we can show that [
¯̄̄P

=1



h
 
 − 

³




´i
̄

³




´¯̄̄
]2 =  () by arguments analogous to

those for (37). Therefore, we have A2 = (
√
).

Finally, we can easily show that the last term on the RHS of (34) is (
√
[


 +

q
(log) 1 ]).

From these arguments, we now have shown (30) as desired.

The convergence rate of B in (31). By the same arguments as for (33), we only need to con-

sider the case where 
 ∈ ◦. Applying the Taylor expansion to (̂ ()− 0)− ( ()− 0),

we can write B = B1 +B2, where

B1 = (
√
2)

X

=1
 0(( ()− 0))[̂− ()−  ()]

 () ;

B2 = (
√
23)

X

=1
 00((̌− ()− 0))[̂− ()−  ()]

2 () ;

and ̌− () is on the line segment connecting ̂− () to  (). We can show that

B2 =  (
p
3[


 +

q
(log) 1 ]

2) (39)

by arguments as those for (27) (with the boundedness of  () and (24) of Lemma 2).

29Note that the existence of 
· · 


and its differentiability follow from the existence of the density 

· 

of

 
 and the differentiability of 

· 

and 

· 

in Assumption 11)
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To find the rate of B1, we use the expression (23) in Lemma 2. By letting

 () : =
¡
12

¢
 0(( ()− 0))

 ()
( − 

 )1{ = 
 } () ;

̄ () : = [ ()];

 () : =
¡
12

¢
 0(( ()− 0))

 ()
( − 

 )1{ = 
 } [ ()−  ()]  () ;

̄ () : = [ ()]

we can write

B1 = (
√
2) (− 1)

X

=1
̄ () [ −  ()]

+ (
√
2)

X

=1

X
1≤≤;  6=[ ()− ̄ ()] [ −  ()]

+ (
√
2) (− 1)

X

=1
̄ () + (

√
2)

X

=1

X
1≤≤;  6=[ ()− ̄ ()]

+ (
√
2)

X

=1

¯̄
 0 (( ()− 0) )

 ()
¯̄
×([


 +

q
(log) 1 ]

2) (40)

where we below investigate the convergence rates of the five terms on the RHS.

To consider the rate of the first term, note that

̄ () = − [ ()  ()] 1 (0 ) [1 +  (1)] uniformly over  ∈ 
◦ × 

where 1
¡
 

¢
:= () 

¡
 

¢
and 

¡
  

¢
is the probability function of 

¡
 

 



¢
and (used in (38)). This follows from standard integration-by-parts and change-of-variable tech-

niques as in the proof 6 of Hansen (2008). Therefore, by using the boundedness of [ −  ()] ̄ ()

and the Billingsley inequality (as in deriving (37)), we can show that[
¯̄̄P

=1 [ −  ()] ̄ ()
¯̄̄2
] =

 () and thus, the first term on the RHS of (40) is  (
√
).

To investigate the rate of the second term on the RHS of (40), we let

 ( ) := [ ()− ̄ ()] [ −  ()]  (41)

Then, we consider the following moment:

[
¯̄̄P

=1

P
1≤≤;  6=[ ()− ̄ ()] [ −  ()]

¯̄̄2
]

=
PP

1≤≤; 6=

n
[| ( )|2] +[ ( ) ( )]

o
+

PPP
1≤≤; 6= 6=;

 [ ( ) ( )](42)

where the equality holds since {} is I.I.D., [ () − ̄ () | { : 1 ≤  ≤ ;  6= }] = 0

for any  6=  and [ −  () | ] = 0 for any  (i.e., it holds that [ ( ) ( )] =

[ ( ) ( )] = [ ( ) ( )] = 0 for  6=  6=  and [ ( ) ( )] = 0 for

 6=  6=  6= ). Then, we can show that

[| ( )|2] = (131 )

[ ( ) ( )] ≤
q
[| ( )|2][| ( )|2] = (131 )
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uniformly over  and  ( 6= ), by standard change-of-variable arguments, and also thatPPP
1≤≤; 6= 6=;

 [ ( ) ( )] = (2721 ) (43)

where we below provide the proof of (43). Now, these results imply that the RHS of (42) is

(2721 ) and therefore, the second term on the RHS of (40) is  (1

q
521 ).

The third term on the RHS of (40) can be shown to be  (
√



 ), since

̄ () = (

 ) uniformly over  ∈ 

◦ × 

which follows from by the standard change-of-variable and Talylor-expansion arguments.

As for the fourth term on the RHS of (40), we look at

[
¯̄̄P

=1

P
1≤≤;  6=[()− ̄()]

¯̄̄2
]

=  (− 1)
n
[
¯̄
1 (2)− ̄ (2)

¯̄2
] +[

£
1 (2)− ̄ (2)

¤
[2 (1)− ̄ (1)]]

o
+ (− 1) (− 2)[[1 (2)− ̄ (2)][1 (3)− ̄ (3)]]

= (231−2 ) +(3
2
 3) (44)

where the first equality follows from the I.I.D. condition of {} and the fact that [ () −
̄ () | { : 1 ≤  ≤ ;  6= }] = 0; and the last equality uses the following results

[
¯̄
1 (2)− ̄ (2)

¯̄2
] = (131−2 );

[
£
1 (2)− ̄ (2)

¤ £
2 (1)− ̄ (1)

¤
] = (11−2 ); and

[
£
1 (2)− ̄ (2)

¤ £
1 (3)− ̄ (3)

¤
] = (

2
 3)

which can be shown by the Taylor-expansion, change-of-variable and integration-by-parts tech-

niques. Given (44), we can see that the fourth term on the RHS of (40) is  (

q
121 +


 ).

The last term on the RHS of (40) can be easily shown to be  (
√
[


 +

q
(log) 1 ]

2).

Therefore, by putting these arguments together, we have

B1 =  (
√
) + (1

q
521 ) + (

√



 )

+ (

q
121 + 


 ) + (

p
[


 +

q
(log) 1 ]

2) (45)

Now, by (39) and (45), we obtain the desired result (31). It remains to show (43).

Proof of (43). We consider two moment bounds of  [ ( ) ( )]. First, by recalling the

definition of  in (41) and by using standard change-of-variable arguments, we can easily show

that

| [ ( ) ( )]| = 
¡
13

¢
(46)
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uniformly over ,  and  with  6=  6= . Second, by the Davydov inequality (see, e.g., Corollary

1.1 of Bosq, 1998), we have

| [ ( ) ( )]|
=

¯̄

£

£©
 ()− ̄ ()

ª©
 ()− ̄ ()

ª |  

¤ { −  ()} × { −  ()}
¤¯̄

≤ 8(2|−|)
14
n
[

¯̄

£©
 ()− ̄ ()

ª©
 ()− ̄ ()

ª | 

¤ { −  ()}
¯̄2
]
o12

×
n
[| −  ()|4]

o14
= exp{−̃ | − |} ×(

q
1721 ) (47)

uniformly over  6=  6=  with  6=  6=  and | − | ≥  + 1, where the last equality uses the

geometric mixing condition of {} (Assumption 16), the Jensen inequality, the boundedness
of | −  ()|(≤ 2 for any ), and the following result:

[
©
 ()− ̄ ()

ª2 ©
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Now, let {} be a sequence of integers tending to ∞ (as →∞). Then,PPP
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where the first equality follows from (46) and (47); and the last equality holds by letting  :=

1121 (this  is some polynomial order of  under the stated bandwidth conditions and thusP∞
=+1

exp{−̃} ∞). We now have proved (43) as desired.

The convergence rate of C in (32). Let  ( 0) any (small) constant. Then, by (24) of

Lemma 2, for  ∈ Ω∗ such that Pr (Ω∗) = 1, there exists some ̄ such that for any  ≥ ̄,

max∈{1} sup∈× |̂− ()−  ()| ≤ . In this case, if  
 ∈ ◦,  () = 0 and thus

max∈{1} sup∈× |̂− ()| ≤ , implying that for  small enough, [̂− ()− 0]  is large

enough and  (̂− ()− 0) = 0. This, together with (33), means that if  ∈ ◦ and  is large

enough (with  small enough), [ (̂− ()− 0)− ( ()− 0)]
£
̂ ()−  ()

¤
= 0.

Thus, for deriving the upper bound of C, it is sufficient to consider only the case where  ∈ ◦
and therefore, for  small enough, it almost surely holds that

|C| ≤ (
p
)× (1)

X

=1
K∗(( ()− 0))

×max∈{1} sup∈× |̂− ()−  () | × sup∈◦× |̂ ()−  () |
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where K∗ is the function used for deriving the bound of J in (27). By (24) and (26), we now
obtain the desired result (32).

It remains to prove two auxiliary lemmas:

Proof of Lemma 2. Let

̂− () := −1
X

1≤≤;  6= 
( 

 − )1{ 
 = };

Γ̂− () := −1
X

1≤≤;  6= 
( 

 − )1{ 
 = } [ ()−  ()] ;

̂− () := −1
X

1≤≤;  6= 
( 

 − )1{ 
 = } [ −  ()] 

Then, for each , we can write

̂− ()−  () = [̂− () + Γ̂− ()]×
h 1

 ()
+

 ()− ̂− ()
̂− ()  ()

i
 (48)

For the components on the RHS of (48), we can show the following convergence results:

max∈{1} sup∈◦× |̂− ()−  () | = (

 +

q
(log) 1 ); (49)

max∈{1} sup∈× |̂− ()−  () | = ( +

q
(log) 1 ); (50)

max∈{1} sup∈× |Γ̂− () | = (

 + 

q
(log) 1 ); (51)

max∈{1} sup∈× |̂− () | = (

q
(log) 1 ) (52)

whose proofs are provided below. Now, fix any  ∈ Ω∗, where Ω∗ is an event with Pr (Ω∗) = 1.

Then, (50) implies that as  → ∞, max∈{1} sup∈× |̂− () −  () |  12 (1 is given

in Assumption 15), and therefore,

max∈{1} sup∈× 1̂− ()

= max∈{1} sup∈× 1[ () + ̂− ()−  ()] ≤ 1 (12) 

implying that

1̂− () =  (1) , uniformly over  ∈ {1     } and  ∈  ×  (53)

Now, by (48) and (51)-(53), we have the following expression:

̂− ()−  () = [̂− () + Γ̂− ()] () +(

 +

q
(log) 1 )× |̂− ()−  () |

Then, (49) and (50) imply the first and second results (23) and (24), respectively. It remains to

show show (49), (50), (51) and (52).

Proofs of (49) and (50). Letting ̂ () := −1
P
1≤≤ 

( 
 −)1{ 

 = }, we have the
following decomposition:

̂− ()−  () = ̂ ()−  ()− (1 )−1
¡
( 

 − )
¢
1{ 

 = }
= {̂ ()−[̂ ()]}+ {[̂ ()]−  ()}+(11 ) (54)
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where the last equality holds uniformly over  ∈ {1     } and  ∈ × by the boundedness of

the kernel function . By applying analogous arguments as in the proof of Theorem 3 of Hansen

(2008), we can show that the first term on the RHS of (54) is (

q
(log) 1 ) uniformly over

 ∈  × .30

As for the second term, noting that ◦ is strictly in the interior of , we can also show that

sup()∈◦× |[̂ ()]−  () | = (

 )

which follows from standard arguments for biases of kernel-based estimators, say change-of-variable

and Taylor-approximation arguments with Assumption 13 (see, e.g., proofs of Theorems 6 and 8 in

Hansen, 2008). This implies the desired result (49). Next, if we let the domain of  as the whole

set  (instead of ◦), we have

sup()∈× |[̂ ()]−  () |
= sup()∈×

¯̄̄P
∈(1

1
 )
R
∈ ((

 − ))1{ = }( ) −  ()
¯̄̄

= sup()∈×
¯̄̄R

∈ ()  (
)
h
( + 

 )− ( )
i

¯̄̄

= sup()∈×
¯̄̄R

∈ ()  (
) h ()(̃ )i

¯̄̄
≤ 

R
∈ | () | × |||| × sup()∈× || () ( )|| = () (55)

where  ( ) := {|  +  ∈ }; h i is the inner product of vectors  and ; ̃ is on the

line segment connecting  and  + 
; the second equality holds by changing variables with

( −)  = ; and the third equality uses the mean-value theorem; and the inequality uses

the fact that  ( ) ⊃  (uniformly) over any  ∈  for  is small enough (note  is the

support of , and  and  are compact). Now, we can see that the above arguments and (55)

implies the desired result (50).

Proof of (51). We write

Γ̂ () := −1
P
1≤≤ 

( 
 − )1{ 

 = }[ −  ()] (56)

By the same arguments as for (54), it holds that

Γ̂− () = [Γ̂ ()] + {Γ̂ ()−[Γ̂ ()]}+(11 ) (57)

uniformly over  ∈ {1     } and  ∈  × .

First, to derive the bound of [Γ̂ ()], find a set 
+

¡⊂ R1
¢
satisfying the following conditions:

(1) ◦ ( 
+ ( ; (2) all the boundary points of ◦ are in the interior of +, and all the

30We note that we only suppose the first-order stationarity of the sequence, while Hansen (2008) considers the strict

stationarity case. However, the key to Hansen’s results is the mixing condition and the strict stationarity condition is

not an essential one. In fact, Kristensen (2009) work without any stationarity condition and derives results analogous

to those in Hansen (2008).
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boundary points of 
+ are in the interior of 

. By Assumption (15), such 
+ exists. Let 


+ :=©

 ∈ |  ∈ 
+

ª
. Then, we look at the following bound:

sup()∈× |[Γ̂ ()]| ≤ sup()∈+× |[Γ̂ ()]|+ sup()∈
+× |[Γ̂ ()]| (58)

The first term on the RHS of (58) is (

 ). This can be shown by standard arguments for biases

of kernel-based estimator (note that all the points of 
+ are strictly in the interior of 

). As for

the second term on the RHS of (58), we see

sup()∈
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= sup
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 () ( + 
 )( + 

 )
¯̄̄
= 0

where the second equality holds since ( ) = 0 for ( ) ∈  
+ × , and the last equality

holds for  small enough, since (
 + 

 ) = 0 for such , which follows from the fact that

 + 
 ∈ ◦ for  ∈  

+ and for any , if  is small enough (we note that the support of ,

, is supposed to be bounded and ||||   for some positive constant). Therefore, we have

sup()∈× |[Γ̂ ()]| = (

 ) (59)

Second, we derive the uniform bound of {Γ̂ ()−[Γ̂ ()]}. For this purpose, let {} be an
array:

 := 
¡
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 − )
¢
1{ 

 = } [ ()−  ()]

−[ ¡( 
 −)

¢
1{ 

 = } [ ()−  ()]]

Note that (1 )
−1P

=1  =
P

=1(Γ̂ ()−[Γ̂ ()]). By arguments similar to those for [Γ̂ ()],
we can show that for any  ≤ , [(

P
=1 )

2
] =

P
=1[

2
] = (1+2 ) uniformly over¡

 
¢ ∈  × . Given this variance bound and using techniques based on Bernstein-type

inequality (see, e.g., the proof of Theorem 3 in Hansen, 2008), we can prove that

sup()∈× |Γ̂ ()−[Γ̂ ()]| = (

q
(log) 1 ) (60)

which, together with (57) and (59) imply the desired result (51).

Proof of (52). This result follows from arguments analogous to above, and we omit details (we

use arguments as in the proof of Theorem 3, Hansen, 2008). Now, the proof is completed.

Proof of Lemma 3. The proof proceeds quite analogously to that of Lemma (2), and we omit

details for brevity. By considering the decomposition of ̂ () −  () as in (48) and derive

results corresponding to (49)-(52), we can obtain the desired expressions (we note that the uniform

rates are established only over  ∈ ◦ (the interior set) and in terms of convergence in probability,

where we use arguments analogous to those for Theorems 2, 6 and 8, Hansen, 2008).
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